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The Quest for Speed

● Ever increasing database performance demands

● Better hardware (faster/multiple CPUs, more RAM, SSDs)

● Better software (caching, in-memory, …)

● Scaling out (distribution, scheduling, partitioning, …)

●Classical networking has significant overheads

● Memory allocations and copy operations

● System calls and context switches

Current Trend: Remote Direct Memory Access

●Drastic performance improvements by bypassing the 

kernel & CPU; user-level networking

●Highly specialized hardware, infrastructure & software

Our Approach:

● Propose middle ground:

●Move parts of application logic into the stack 

● Benefits from well-established TCP/IP network stack

● Solution: application agnostic offloading scheme

●Generic rule execution engine

● Allows applications to install custom rules 

(condition/processors) for common requests

● If condition matches, engine replies using processors 

instead of application

Channelize processing!

[Van Jacobson, ‘06]

Bypass the Kernel!

[e.g., USENIX ATC‘12]

Offload computation

partly to GPUs!

[SIGCOMM‘10]

Optimize I/O and 

cache coherence!

[e.g., ANCS‘12]

Implement TCP 

in user-level!

[e.g., IBM Technical Report]

Mux/Demux flows

on specialized NICs!

[INFOCOM‘01]

Use batching 

to reduce overheads!

[e.g.,NSDI‘12]

Build a user space

wrapper for Kernel stack!

[USITS‘01]

Slim down skbs!

[SIGCOMM‘10]

Handle short 

connections differently!

[OSDI‘12]

Use per-app stacks!

[e.g., CCR’14 SIGCOMM‘14]

Special hardware Kernel modifications User-level networking Other
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Santa Setup

● Application inserts rule

On Receive:

● If packet matches rule,

send pre-determined reply

● If not, application handles

the packet as usual

Source: Larsen et al., “Architectural Breakdown of End-to-End Latency in a TCP/IP network, J Parallel Prog, 37:6, (2009)
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Engine

●Condition as byte-pattern

●Recipe for reply using processors, e.g.:

●Write string into packet

●Copy data from input packet to 

output packet 
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1

Offset: 0

Content:

“GET key\r\n

END\r\n”

Offset: 0

Content:

“VALUE key 0 5\r\n

value\r\n

END”

2

Offset: 12

Content:

“SELECT * FROM table”

Offset: 0

Copy: bytes 0–1

Offset: 2

Content: “all table rows”

… … …

● 4 traffic generating clients

●Unmodified Linux kernel

●Generate workload

● 1 Server

●Different applications

● Santa Linux kernel

● 10 Gbit/s Ethernet links

traffic-generating clients

Application server

+ Santa Kernel
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Conclusion

●Reduced computational expenses

● Santa increases throughput significantly

● Latency is significantly decreased

● At higher payloads, copy operations still become dominant

●Highly optimized user-space applications are slower 

(Memcached, MySQL query cache)

●Recent new networking techniques can speed up 

databases in general

Memcached (KV-Store)

●UDP transport

●Modified multi-socket server

● Pre-populated keys (16 Byte)

● Varying value size

●Modified memaslap

● Four clients

MySQL (RDBMS)

● TCP transport

● Single column indexed table

●Query cache on/off

● Varying payload size

●mysqlslap

● Single client

Use RDMA!

[e.g., VLDB‘15/‘16]

In-Memory

[IEEE Tr. Kn. & Data Eng. ‚92]

Columnstore

[e.g., SIGMOD‘85]
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