
It’s Time to Combine Network

Advances and Databases

Other Solutions

Motivation Related Work Our Solution

Evaluation

Santa Architecture

Testbed

The Quest for Speed

● Ever increasing database performance demands

● Better hardware (faster/multiple CPUs, more RAM, SSDs)

● Better software (caching, in-memory, …)

● Scaling out (distribution, scheduling, partitioning, …)

●Classical networking has significant overheads

● Memory allocations and copy operations

● System calls and context switches

Current Trend: Remote Direct Memory Access

●Drastic performance improvements by bypassing the

kernel & CPU; user-level networking

●Highly specialized hardware, infrastructure & software

Our Approach:

● Propose middle ground:

●Move parts of application logic into the stack

● Benefits from well-established TCP/IP network stack

● Solution: application agnostic offloading scheme

●Generic rule execution engine

● Allows applications to install custom rules

(condition/processors) for common requests

● If condition matches, engine replies using processors

instead of application

Channelize processing!

[Van Jacobson, ‘06]

Bypass the Kernel!

[e.g., USENIX ATC‘12]

Offload computation

partly to GPUs!

[SIGCOMM‘10]

Optimize I/O and

cache coherence!

[e.g., ANCS‘12]

Implement TCP

in user-level!

[e.g., IBM Technical Report]

Mux/Demux flows

on specialized NICs!

[INFOCOM‘01]

Use batching

to reduce overheads!

[e.g.,NSDI‘12]

Build a user space

wrapper for Kernel stack!

[USITS‘01]

Slim down skbs!

[SIGCOMM‘10]

Handle short

connections differently!

[OSDI‘12]

Use per-app stacks!

[e.g., CCR’14 SIGCOMM‘14]

Special hardware Kernel modifications User-level networking Other

Acknowledgements
This work has received funding from the European Union’s Horizon 2020

research and innovation program 2014–2018 under grant agreement No.

644866 (“SSICLOPS”). It reflects only the authors’ views and the European

Commission is not responsible for any use that may be made of the

information it contains.

Santa Setup

● Application inserts rule

On Receive:

● If packet matches rule,

send pre-determined reply

● If not, application handles

the packet as usual

Source: Larsen et al., “Architectural Breakdown of End-to-End Latency in a TCP/IP network, J Parallel Prog, 37:6, (2009)

1

2

3

Engine

●Condition as byte-pattern

●Recipe for reply using processors, e.g.:

●Write string into packet

●Copy data from input packet to

output packet

1

2

user

kernel
3

kernel

hardware

Engine

APP

TRANS

NET

MAC

Rule

#
Condition Reply-Processors

1

Offset: 0

Content:

“GET key\r\n

END\r\n”

Offset: 0

Content:

“VALUE key 0 5\r\n

value\r\n

END”

2

Offset: 12

Content:

“SELECT * FROM table”

Offset: 0

Copy: bytes 0–1

Offset: 2

Content: “all table rows”

… … …

● 4 traffic generating clients

●Unmodified Linux kernel

●Generate workload

● 1 Server

●Different applications

● Santa Linux kernel

● 10 Gbit/s Ethernet links

traffic-generating clients

Application server

+ Santa Kernel

Transmission

Reception

 0 1000 2000 3000 4000 5000

Socket API

User-Kernel Copy

Protocol Stack

Driver

NIC

[ns]

Jens Helge Reelfs, Oliver Hohlfeld, Klaus Wehrle

user

kernel

HW

kernel

Kernel-

Software

MAC

NET

TRANS

APP

Classical

Network Stack

APP

MAC

NET

TRANS

Kernel

Bypassing

n
e
tm

a
p

/
d
p
d
k

APP

µSTACK

MAC

NET

TRANS

UDP: Memcached TCP: MySQL

Conclusion

●Reduced computational expenses

● Santa increases throughput significantly

● Latency is significantly decreased

● At higher payloads, copy operations still become dominant

●Highly optimized user-space applications are slower

(Memcached, MySQL query cache)

●Recent new networking techniques can speed up

databases in general

Memcached (KV-Store)

●UDP transport

●Modified multi-socket server

● Pre-populated keys (16 Byte)

● Varying value size

●Modified memaslap

● Four clients

MySQL (RDBMS)

● TCP transport

● Single column indexed table

●Query cache on/off

● Varying payload size

●mysqlslap

● Single client

Use RDMA!

[e.g., VLDB‘15/‘16]

In-Memory

[IEEE Tr. Kn. & Data Eng. ‚92]

Columnstore

[e.g., SIGMOD‘85]

Application

R
D

M
A

control

