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ABSTRACT

Detecting where traffic enters a network enhances network oper-
ation, but poses a complex measurement problem that requires
analyzing a continuous traffic stream from all border routers—a
challenging task for ISPs in the absence of a scalable approach.

To enable ISPs to perform Ingress Point Detection (IPD), we pro-
pose an efficient approach that accurately identifies traffic ingress
points at ISPs of any size using flow-level traffic traces. IPD iden-
tifies the specific router and interface through which a particular
segment of the Internet address space enters a network. IPD splits
the address space into fine-grained ranges to identify the specific
router and interface through which segments of the address space
enter the network. We have deployed IPD for six years at a major
tier-1 ISP with an international network that handles multi-digit
Tbit/s traffic levels, and our experience shows that IPD can ac-
curately identify ingress points and scale to high traffic loads on
a single commodity server. IPD enabled the ISP to improve net-
work operations by identifying performance issues and realizing
advanced traffic engineering practices.
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1 INTRODUCTION

“Why is Netflix slow at home in only one city of an ISP’s network?”
Answering such seemingly simple questions poses a complex traf-
fic analysis problem. Even if the issue is not the ISP’s fault, they
are often blamed since they provide upstream to their customers.
Therefore, it is valuable for ISPs to identify and resolve performance
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Figure 1: Paper Goal: Enable ISPs to infer where traffic enters
their network (colored ingress points). Detecting them re-
quires analyzing continuous traffic streams from all border
routers—a complex analytics problem.

bottlenecks and other traffic-related issues to maintain customer
satisfaction. This requires understanding where traffic enters the
network, which is a complex problem, as we will show.

ISPs face numerous operational questions that necessitate per-
forming traffic ingress point detection. For instance, if an ISP’s
expensive intercontinental links are becoming fully loaded, they
need to determine the origin of the traffic being carried over these
links to decide if investing in additional capacity would be profitable.
ISPs can check if their peers are violating settlement-free peering
agreements by carrying traffic from other peers over peering links.

Answering such operational questions in small networks is easy,
but complicated in larger ones for two reasons. First, large networks
have multiple interconnection links with other ASes, leading to
several possibilities for traffic to enter the ISP’s network (see Fig-
ure 1). These possibilities depend on routing policies and routing
decisions made by other networks. Second, while BGP determines
the forward path (i.e., from the ISP to the destination AS), it cannot
determine the reverse path due to asymmetries [3, 11, 12]. BGP can
only eliminate routes by selective announcements or make them
less likely with egress traffic engineering. Still, it cannot definitively
determine where traffic enters an ISP’s network—even though prac-
titioners sometimes attempt to do this.

This paper introduces a data-driven solution that enables ISPs to
determine traffic ingress points for any prefix. Our IPD algorithm
is scalable and can be used by ISPs of any size to identify traffic
ingress points online. IPD solves a complex measurement problem
by analyzing flow-level traffic traces from all border routers of an
ISPs network. It runs at fine-granular time-bins, is configurable to
as little as minutes, and can run on readily available commodity
hardware, requiring only a single server for an entire ISP. We have
deployed IPD at a major tier-1 ISP and evaluated its performance
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Figure 2: Stability duration per
prefix on a link: 60% remain
stable for < 1 hour.

over the course of six years. We share our deployment experience
and contribute the following:

e We present IPD, an online algorithm to detect traffic ingress
points at ISPs of any size. It solves a complex traffic analysis
problem by analyzing incoming traffic flows at all border routers
of an ISPs’ network—at any traffic rate and in real-time (§ 3).

o We show that the studied tier-1 ISP exhibits high traffic dynamics
and that ingress points can thus often change. IPD thus needs to
run in minute intervals at large networks on commodity hard-
ware (one server for the studied tier-1 ISP). To run the approach at
scale, we present design choices enabling scalability and further
determine the IPD parameterization with a systematic parameter
study that assessed over 300 different parameter sets.

e We have deployed IPD at a major tier-1 ISP for six years and
use this experience to empirically evaluate the proposed IPD
algorithm (§ 5). The ISP operates a large international network
and shifts traffic in the multi-digit TBit/s range, which shows
the scalability of the approach. We show that it accurately infers
traffic ingress points, how traffic dynamics impact the stability of
ingress mappings, the asymmetry of Internet paths by correlating
ingress with egress points (BGP), and operational use cases.

e We release a prototypical IPD implementation at [24]. To quickly
experiment with IPD, we further release a Mini IPD environ-
ment [25] that runs IPD in the Mini Internet [14] and includes an
example ISP scenario—ready to be used for research and teaching.

2 INGRESS POINTS CHANGE OFTEN

Internet traffic is highly dynamic and traffic ingress points change
quickly, as we will show in this section. These changes pose a
challenge to network operation, in particular traffic engineering.
Traffic dynamics and sudden changes in ingress points originate
from changes in CDN mapping functions (server selection), demand
variability, server maintenance, or BGP/IGP route adjustments. For
improved network operation, ISPs can benefit from ingress point
information—a challenging problem that is addressed by this work.
Ingress points change quickly at ISPs. We begin by motivating
that it is insufficient to run IPD once or to use static rules. Due to
the traffic dynamics—primarily originating from CDN operations—
ISPs must regularly run IPD (e.g., every n minutes). To address
this challenge, our IPD algorithm (§ 3), efficiently processes traffic
from all border routers within minutes. We remark that this paper
focuses on IPD at ISPs that largely face ingress traffic dynamics

Figure 3: Ingress router count per prefix:
more BGP paths exist, while traffic of most
prefixes only have 1 ingress point.
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Figure 4: Relative traffic share of first ranked
ingress router per /24 prefix: often a single
ingress point is dominant.

imposed by server selection at cloud and CDN providers (ingress
dynamics at CDNs/clouds can differ!).

To study traffic dynamics at a tier-1 ISP (see § 4), we quantify

the duration of prefix stability at ingress points using the raw IPD
results (Figure 2). Notably, 60% of prefixes remain stable for less
than one hour, while only 10% remain stable for more than six hours.
This highlights that ingress points change quickly. To use IPD for
improved network operation (e.g., CDN traffic steering [28]), the
IPD needs to run frequently.
Most prefixes only have one ingress point. Next, we investigate
the number of potential ingress points into the tier-1 ISP’s network.
Figure 3 shows the distribution of the number of different next-hop
routers for each prefix from BGP tables (dotted lines). The solid
lines illustrate the number of simultaneous ingress points per /24
prefix, derived from the ISP’s flow traffic data (§ 4). We further
show the prefixes of the top 5 and top 20 ASes that contribute the
most ingress traffic to the ISP. For BGP, we observe that only 20%
of the prefixes have only one next-hop router, while 60% have more
than five possible routes and thus likely ingress points. We observe
similar trends for the top 5 and top 20 ASes by overall traffic.

Yet, when examining the actual traffic ingress points extracted

from the flow data, it becomes evident that traffic does not enter
via all the BGP-announced links. Instead, nearly 80% of the traffic
enters through only one ingress point when considering the entire
distribution. For the top 5 and top 20 ASes, about 30% and 58% of
the cases, respectively, involve multiple entry points. As a result,
in most cases, only a single ingress point exists.
Single ingress points carry the bulk of traffic. In Figure 4, we
focus on prefixes that have more than one ingress point. This CDF
shows the distribution of traffic share across different ingress links.
The orange curve represents the traffic distribution across all ASes,
and the various shades of blue represent the top 5 ASes’ distribu-
tions. For 80% of all prefixes, 80% or less of the traffic enters through
the primary ingress link. In other words, a dominant ingress point
exists that carries the bulk of the traffic.

However, when multiple ingress points have a significant traffic
share, traffic engineering becomes more complex. In this case, it’s
not sufficient to detect the ingress point (source IP to ingress link
mapping). Destination networks must also be tracked to determine
the path of flows through the ISP network and identify the issue.
This quickly results in a state explosion, which IPD avoids by not
tracking complete paths.
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Takeaway. Our empirical motivation shows the fundamental design
requirements for our IPD algorithm. Firstly, ingress points change
frequently and thus the IPD algorithm needs to run frequently, e.g.,
every minute. Processing large data volumes from all border routers
within minutes poses a big data problem. Secondly, for most prefixes
only a single ingress point exists. In case of multiple ingress points,
typically a single carries the bulk of the traffic per prefix (e.g., 80%).
Since these are the ingress points that traffic engineering is performed
on, our algorithm needs to additionally identify the ingress point that
carries the most traffic.

3 INGRESS POINT DETECTION (IPD)

We next describe the design of IPD, which is designed to detect
the ingress points at the smallest configured prefix granularity
(cidrmax)- It thus executes a traffic-based partitioning of the IP
address space unrelated to how BGP partitions the space.

3.1 Design Aspects and Requirements

Identifying network ingress traffic requires processing data across
all border routers. Our observations highlight key design consider-
ations for our IPD algorithm:

Ingress prefixes. The IPD focuses on inferring and clustering
ingressing prefixes (from the source addresses) by traffic (not BGP!).
BGP is not an option. Despite popular belief in the operations
community, BGP data cannot be used to (more easily) detect ingress
points. While BGP tables offer a comprehensive view of AS inter-
connectivity and manageable data sizes, they only dictate traffic’s
outbound paths, while the sending party has the power to change
inbound routes, often leading to path asymmetry. Further, BGP
prefixes are not aligned with IPD prefixes, which are typically more
specific. These limitations render BGP unsuitable for ingress point
detection, as we illustrate in § 5.5.

Input data: sampled flow-level traffic. IPD is a traffic-based
clustering of the IP address space; thus, the input data is traffic. For
mapping source IP addresses to ingress links, we rely on flow-level
traces (e.g., Netflow or IPFIX) from all border routers. It is important
to note that only traffic from ingress links can be used as input.
This IPD process requires handling substantial data volumes (in our
case, hundreds of border routers with the total traffic exceeding
tens of Tbit/s). To cope with these high data rates, routers apply
random packet sampling (1 out of n pkts) with rates that range from
n = 1,000 to 10,000 (depending on vendor, software, etc.). Thus,
unsampled data is never available.

Addressing clock drift with statistical time. While router clocks
would always be perfectly synchronized in an ideal setting, the
deployment practice on > 3,000 routers shows that inaccurate
router clocks occur. Inherent discrepancies in router clocks thus
necessitate a robust method to address potential data errors like
inaccurate timestamps. We address this issue in a pre-processing
step. Since this step is not part of the IPD, we only briefly sketch
the approach and remark that its details are beyond the scope
of this work. To do so, we rely on inferring sequences of events
from time input in the flow data, rather than assuming that all
clocks are in sync. This statistical time approach segments traffic
into uniform time buckets and analyzes flow samples within these
periods. Intervals that don’t meet a certain activity threshold are
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discarded, along with data outside the current time range. This
method might exclude some data but ensures consistency despite
clock drifts.

Efficiency and scalability. With hundreds of border routers gen-
erating millions of flow records per minute, IPD needs to scale. We
made the following design choices as IPD is an online algorithm that
must be completed by the end of each time bucket (e.g., 1 minute).

1) Aggregating IPs into IPD ranges. For effective ingress point
detection, we employ a traffic-based aggregation using the CIDR
addressing scheme, avoiding the inefficiency of tracking every in-
dividual IP address. This method treats the Internet’s address space
as a binary tree, with each node representing a CIDR range. To
streamline the process, we mask each source IP with a predefined
maximum CIDR mask (cidrmax), significantly reducing the number
of individual addresses to monitor. Since BGP prefixes are not us-
able (see § 5.2), we implement a traffic-based aggregation based on
the CIDR addressing scheme. This approach allows for manageable
state maintenance while ensuring accurate IPD.

2) Optional simplification: Preferring flow counts over
byte counts. A direct implementation of IPD will likely be based on
using byte counts. For efficiency reasons, we use byte counts for clas-
sification of IPD ranges and switch to counting flows once an ingress
link for a IPD range is classified (i.e., sipcount is flow-based). Our
primary motivation is to lower the frequency of counter overflows.
A 32-bit byte counter would quickly overflow on high-capacity
links with normal loads. We experimented with representing large
integers (bigint) to prevent this, but it significantly slowed down all
computations involving the per-range sample counts. However, we
did not encounter the same issue of counter overflows that were too
quick when using flow counts in the per-range fields. In our case,
we observe a strong correlation (0.82) between flow and byte counts
in our traffic, which shows that flow counts can serve as a proxy
measure. Our practical deployment of IPD classification using flow
counts instead of byte counts yielded good results. Users of IPD
with other requirements might opt not to use this simplification
and base all counters on byte counts directly.

Real-time detection. As we show in § 2, 60% of the prefixes remain
stable at the same ingress link for less than one hour. Since accurate
traffic engineering decisions can only be made based on actual data,
the algorithm needs to operate online. Thus, a parameter ¢ that
defines the length of a time bucket can adjust the frequency of
ingress point updates.

Focus on dominant ingress points. Our approach necessitates
identifying all possible ingress points for each prefix carrying enough
traffic, along with their traffic shares. This data is valuable for ISPs,
as it helps them identify incorrect CDN mappings and enhances
traffic engineering via ISP-CDN collaboration [28]. Many of these
network management scenarios, including traffic steering and de-
bugging, focus on the dominant ingress point carrying the bulk of
the traffic (per prefix). Yet, most prefixes usually have one domi-
nant ingress point or a primary link handling most traffic (§ 2), as
evidenced by our six-year deployment experience at a tier-1 ISP.
Thus, our algorithm operates in two stages to manage this. Initially,
it identifies all potential ingress points per prefix. Subsequently,
it narrows down to those that are unique or handle most of the
traffic for each IPD range. To make the algorithm robust to handle
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Figure 5: IPD algorithm: example application

a proportion of abnormal or incorrect (e.g., spoofed!) traffic, a con-
figurable quality parameter g exists. In our operational setting, the
default value for ¢ = 0.95 means that 5% of the traffic for that prefix
may ingress over different links.

Focus on high-traffic prefixes. The IPD is designed to detect the
ingress points of high-traffic prefixes at the smallest granularity to
steer or debug traffic that is of (high) operational relevance to the
ISP. Omitting to detect ingress points for prefixes that hardly carry
any traffic is thus an accepted consequence of our design.

3.2 IPD Algorithm

Our IPD algorithm utilizes a traffic-based partitioning approach
that divides the IP address space into dynamic IPD ranges at high
granularity, adapting to the dynamics of ingress traffic. It employs a
top-down strategy for efficiency, starting with the entire IP address
space, represented as /0 CIDR range. This process, akin to a ’divide
and conquer’ method, involves sequentially subdividing the IP
range into smaller segments. Each subdivision or classification
occurs only when sufficient traffic is detected, and the minimum
sample count (n.;q,) is met for a given segment. This count is
directly related to the segment’s CIDR mask size, ensuring that
classification decisions are based on sufficient data (larger prefixes
need more samples than smaller ones).

Example illustrating the algorithm. To show the operation of
the IPD algorithm, we show the IPv4 address space as a rectangle
ranging from 0.0.0.0 to 255.255.255.255 in Figure 5a. Initially, the
algorithm does not know existing network segments. As network
traffic enters, source IP addresses from flow data are added to the
entire /0 range, represented as lines within the rectangle (Figure 5a).
The line color corresponds to the different ingress points. In our
minimal example, n.;;, values are on the right side of the range

"How robust is IPD against IP spoofing? IPD is designed to detect high-traffic prefixes’
entry points with high granularity. Attacking those would require to generate substan-
tial traffic volumes (to be noticeable, the volume needs to be > g for the attacked prefix
and substantially larger to become the dominant ingress point). This is unrealistic in
practice and can be easily detected through other means, such as massive provisioning
of high-capacity directly attached links.
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(ncigr = 11 for /0). Since 11 flows (called sjpcount) are entered at
tp, the minimum number of required samples is reached (line 8 in
the listing), and the algorithm can check if one dominant ingress
point (color) exists (singress = q)- As many ingress points (colors)
exist at the moment, the algorithm splits the range into two equal
/1 ranges (0.0.0.0/1 and 128.0.0.0/1) at #;, as can be seen in Figure 5b.
By the time t1, two new samples have been added to the left /1 range
indicated by the dashed line style. At this point, the current sample
count (sg;g,) is 10 and exceeds the minimum required samples for
that range (n.;q, = 8). Yet, no prevalent ingress can be detected
since 4 colors exist (line 9), which results in a further split as can be
seen in Figure 5c. The rightmost /1 range still contains 3 samples,
and since n.;4, is 8 for that range, nothing will happen because the
minimum sample count is not reached.

By the time 2, the leftmost /2 range meets its n.;q, requirement
and is uniformly colored blue (g = 1.0), indicating a single dominant
ingress point. It is thus assigned this ingress point. The other /2
range, now with sufficient samples but multiple ingress points, is
further divided.

By the time t3, we see another range being assigned a single
ingress point (red). The process continues, with further splits and
assignments, until either a unique classification is made or the
maximum CIDR mask size (cidrmqyx) is reached. In our operational
setting, cidrmax is set to /28 because the collaborating CDN maps
its geolocation-distributed data centers to /28 subnets, and the ISP
needs to recognize the ingress point changes.

This iterative aggregation, splitting, and classification process

efficiently narrows down the ingress points for vast IP ranges, using
real-time traffic data to reflect current network conditions.
IPD algorithm details. Our IPD algorithm, shown in Algorithm 1,
operates in two stages, executed in parallel threads: i) The first
stage identifies all ingress points for each range by processing flow
data from all border routers. Each source IP is masked to cidrmax
and inserted into a binary tree data structure, one for IPv4 and one
for IPv6 (lines 1-4). ii) The second stage identifies the prevalent
ingress point one per prefix (line 5-19). To do so, it iterates through
all ranges every t seconds, aggregating them into IPD prefixes.

After each t-second cycle, the algorithm checks and updates
the IPD ranges, removing expired data and maintaining state only
for ranges lacking a definitive ingress point. This state includes
the sample counter, the respective ingress, and the last timestamp.
Once a prevalent ingress is found, all state is removed for efficiency
reasons, and only the total number of samples, the counters for the
respective ingresses, and the last timestamp are retained. Source IP
information older than e seconds (default: 120s) is removed from
the range. For already classified ranges, it is still being determined
when to remove state. We thus employ a decay function (see Table 1)
that quickly reduces the counter values. In our implementation, we
use an exponential decay function to quickly reduce the counters.
This ensures that ranges are quickly removed from classification
when no new traffic is received.

Internally, we keep state for all yet unclassified ranges. IPD
checks if these ranges meet the minimum sample threshold (n.;4,)
and then either assigns a prevailing ingress or splits the range for
finer classification. Adjacent ranges may also be joined if they share
the same ingress and meet sample count requirements. Special han-
dling is needed for evenly distributed traffic across multiple router
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Algorithm 1: IPD parameters in red (see Tab.1)

/* thread 1 (Stage 1) */

1 while True do

2 read Netflow row
3 mask src_ip to cidrpax
4 add ts, masked_src_ip, ingress_link to range

/* thread 2 (Stage 2)

5 Every t seconds:

6 for current_range in all_ranges do

7 remove/decrease expired ranges older than e sec
// handle unclassified ranges

8 if check sample counts (sipcount = nciqr) then

9 if single ingress prevalent (singress > q) then

10 L set ingress_link to current_range

else
if cidrmax not yet reached (ciqr < cidrmax)
then
L split current_range

11
12

13

else
L try to join

14
15

// handle already classified ranges

if prevalent ingress still valid (singress > q) then
L try to join

else
L drop current_range

16
17

18
19

interfaces, where they are bundled as a single logical ingress (called
bundles).

Finally, it is determined whether prevalent ranges remain valid.
Invalidated and expired ranges are dropped, ensuring IPD adapts to
changing traffic patterns. Due to the single-threaded nature of this
stage, the runtime scales linearly with the number of ranges, under-
scoring the necessity of efficient range management to maintain
prompt IPD operations.

Parametrization. To identify an optimal parameter set for IPD, we
performed a systematic parameter study using a full factorial design
on 25 hours of Netflow data (§ 4). In this study, we evaluated 308
different parameter combinations subject to IPD accuracy, stability
duration, and resource usage. Our study shows that the parameter
configurations have no significant effect on IPD’s accuracy—i.e., IPD
cannot perform worse when configured suboptimally. The reason is
that IPD is not a learning system, rather it performs a traffic-based
partitioning of the IP address space. Thus, a suboptimal config-
uration will waste memory or CPU resources but not result in a
suboptimal accuracy. Yet, the parameters q and cidrpyx affect stabil-
ity and resource consumption (both IPD iteration time and average
memory usage increase exponentially with higher cidrp,qx values).
For details on this study, see Appendix A. The optimal parameters
used in our production deployment are shown in Table 1.

Open Source Release. We release a prototypical IPD implemen-
tation at [24]. To quickly experiment with IPD, we further release
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a Mini IPD environment [25] that uses the Mini Internet [14] and
includes an example ISP scenario—ready for research and teaching.

Table 1: Default IPD parameters.

Parameter Default  Meaning
cidrmax /28, /48 max. IPD prefix length
neiarfactor 64, 24 minimal sample factor
Neidr = Neigr factor = V2(32=Sciar)
q 0.95 error margin
t 60 time bucket length
e 120 expiration time
decay 1- 2 factor to reduce outdated IPD ranges

NEST

4 DATA SET & ETHICS

This section details the datasets used to evaluate the IPD deployment
at a major tier-1 ISP over six years.
Netflow traffic traces. The ISP captured 25 hours of flow data for
validation at all border routers. It is anonymized by including only
ingress points, source IPs (aggregated to /28 prefixes for privacy),
and timestamps. This dataset, stripped of payload, comprises 48
billion flows (average 32 million per minute) and adheres to privacy
standards by aggregating IPs to /28 to make users unidentifiable.
Data capturing complies with local legal regulations, follows ISP
practices for network debugging, and was stored on-premise.
IPD output data. We obtain six years of raw IPD output data (see
example data in Appendix B) from the ISP. It covers mapped and
non-mapped prefixes and their ingress points at 5 minute granular-
ity. This extensive dataset (2.5T compressed) enables to study the
IPD’s deployment experience.
BGP tables. To study path symmetry, we further obtain periodic
BGP table dumps from the same period as the IPD data. These are
supplemented with link classifications (e.g., PNI) and mappings of
routers and links to connected ASes.

The datasets focus solely on topological data, excluding traffic
or user-specific information, thereby posing no privacy concerns.
Our handling of this data strictly adheres to ethical standards.

5 SIX YEARS OF IPD AT A TIER-1 ISP

Our IPD algorithm has been in operation at a major tier-1 ISP for six
years. In this section, we use data obtained from this deployment to
evaluate the IPD approach in an ISP setting. Specifically, we focus
on three main aspects: i) How well does the IPD approach work
in practice?, ii) How dynamic are IPD ranges and ingress points,
and iii) What operational insights can we obtain, focusing on path
asymmetry and peering violations.

5.1 (How Well) Works IPD in Practice?

Approach. We validate the IPD algorithm’s accuracy by contrast-
ing its determined ingress points with ground truth data derived
from 25 hours of sampled Netflow traffic traces. These traces were
collected from all ingress routers at the ISP’s premise (see § 4). The
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Figure 6: IPD accuracy (vs. ground truth Netflow data)

validation process involves a three-step approach. First, we create a
Longest Prefix Match (LPM) lookup table from the IPD output that
maps each IPD prefix to its corresponding ingress router and inter-
face. Second, we process the flow traces and compare the actual
ingress router and interface with the IPD output by using the LPM
lookup table. Finally, we calculate the ratio of correctly classified
flows (i.e., with matching ingress point) relative to all flows in a
time bin. Since the IPD prediction results are provided in 5-minute
bins, we recompute the lookup table after every 5-minute bin to
ensure we are using the latest available information. By doing so,
we can then compare the output of the IPD prediction to the same
flow data that was used as the original input to the IPD algorithm.

A key focus for traffic engineering is on the prefixes associated
with ASes that account for a significant share of the traffic. To
facilitate these analyses, we have identified the top 5 ASes (referred
to as “TOP5”) that constitute 52% of the total volume, as well as the
top 20 ASes (referred to as “TOP20”) that account for 80% of the
traffic. The term “ALL” denotes the complete set of flows.

5.1.1 IPD achieves high classification accuracy. In Figure 6, we
show the accuracy of the IPD algorithm for TOP5 (blue line), TOP20
(purple line), and the complete traffic (orange line). The maximum
normalized traffic volume (diurnal pattern) is shown as a gray shade.
Looking at the unfiltered set of flows (ALL), on average 91% of the
flows are classified correctly. The accuracy increases to 94% on
average when looking at TOP20, respectively to 97.4% for TOP5.
This shows that IPD is able to accurately classify the ingress points
for prefixes that contribute the major portions of the Internet traffic.
Since these are the prefixes that matter for traffic engineering, IPD
works very well from an ISP perspective.

5.1.2  Few IPD Misclassifications. This raises the question of why
IPD does not correctly identify 100% of the flows. There are a few
unavoidable reasons for misclassifications, including sudden bursts
of traffic, noise, unbalanced load balancing, or the moment when
prefixes shift from one ingress point to another. To study IPD mis-
classifications, we will focus on the TOP5 ASes. There are three
main types of misses:

(1) Interface miss: Traffic enters through a different interface
on the same router.

(2) Router miss: Traffic enters through another router within
the same Point of Presence (PoP).

(3) PoP miss: Traffic enters at a different geolocation.
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Figure 7: IPD misclassifications for TOP5 ASes

To study the prevalence of these three types, we show their
frequency in Figure 7 as (i) absolute miss counts by type per AS
(left plot) and (ii) the number of distinct source IPs (right plot). AS3
experiences the highest number of misses, with PoP misses being
the dominant type—similar to AS4. In contrast, AS1 sees a higher
number of interface misses.

By examining the misses over time (see the upper plot in Fig-
ure 8), we observe notable peaks in AS1 around 11 AM and 11 PM.
These peaks correspond to the short drops in accuracy seen in
Figure 6. AS3 and AS4, show distinct diurnal patterns, as shown in
the lower plot of Figure 8. These patterns may be attributed to the
user-server mapping functions of these CDNs, which respond to
fluctuating on-demand traffic. In contrast, AS1 shows consistent
misses caused by source IPs throughout the observed period. We
will next discuss the reasons for the misses in these three ASes.
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Figure 8: IPD misclassifications of the TOP5 ASes

Starting with AS1, we have identified small prefixes (/25 to /27)
that are responsible for over 65% of all the misses for this AS. In
these cases, IPD has classified a bundle (where multiple interfaces
of the same router are logically mapped as one link in our algo-
rithm) with two interfaces, and all the misses originate from two
other interfaces. By interacting with the ISP, we identified that
maintenance was performed on that router (e.g., replacement or
upgrade) at these times, which is the cause for the observed misses.
Since each prefix already has 400 million to 600 million samples, the
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confidence is accordingly high (indicating a stable link). The more
than 70,000 misses that occur between 10:35 PM and 11:20 PM only
slightly lower the confidence because there are consistently over
80,000 flows per minute enter the expected ingress. This highlights
that IPD demonstrates a certain level of robustness against noise
for high-traffic prefixes.

In AS4, three prefixes are also responsible for most of the misses.
However, they cover relatively large address space with /12 to /15
network sizes this time. When the maximum normalized traffic
curve of the entire AS is overlayed with the miss counts throughout
the day, they almost perfectly align. The correlation coefficients
for these three prefixes with the traffic range between 0.88 and
0.99. This confirms the assumption that these are artifacts of the
user-server mappings by the CDN. These prefixes already contain
between 1.1 billion and 2.2 billion samples, making the relatively
few misclassifications negligible.

In the case of AS3, there isn’t such a clear picture. Networks of
various sizes generate all types of misses, with the majority clearly
being PoP misses. Let’s focus on the top three prefixes. The first
prefix exclusively consists of PoP misses. Here, 1 million flows enter
the network through a router in another country. Most likely, there
is a misalignment in the CDN mapping that may result into a per-
formance bottleneck as described later in § 5.8. Further, the number
of errors follows a daily pattern that correlates with the AS’s traffic
(corr. coefficient of 0.84). The second prefix exclusively experiences
router misses. Upon closer examination, it is precisely two routers
at the same PoP that receive misses in roughly equal proportions.
This is undoubtedly router-based load balancing, which is currently
not recognized by IPD. The third prefix, on the other hand, contains
exclusively interface misses, which can be argued similarly to AS1.
Takeaway. IPD can accurately compute the ingress router and inter-
face in practice. Overall, IPD is relatively robust against noise induced
by traffic shifts or operational changes.

5.2 Distribution of IPD Ranges

A crucial design requirement is partitioning the IP space into IPD
ranges by traffic (refer to § 3.1). These ranges are expected to be
independent of BGP prefix sizes, making static partitioning (e.g., as
in [22]) suboptimal. We now demonstrate that IPD range sizes vary
and are independent of BGP.

In Figure 9, we present the distribution of IPv4 IPD range sizes for
the entire dataset (in orange) alongside BGP prefix sizes (in gray),
and TOP5 and TOP20 subsets (in blue and purple, respectively).
Initially, comparing the ‘ALL’ category with BGP reveals that both
distributions are markedly different. Notably, a small number of
IPD ranges are observed between /7 and /13, whereas relatively few
BGP prefixes are larger than /29.

For clarity, our plots primarily focus on masks ranging from
/14 to /28. Here, announcements of /24 prefixes in BGP constitute
over 50% of the total. Prefixes from /20 to /23 each represent a
share of 5% to 10%. In contrast, the IPD algorithm segments the IP
address space into smaller parts, varying based on ingress links. For
example, if 1.2.0.128/26 and 1.2.0.192/26 enter via the same ingress,
they are aggregated into 1.2.0.128/25. Furthermore, some CDNs
use internal addressing that goes down to /28, mapping users to
servers. Limiting the IPD to a maximum CIDR of /24 would hinder
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Figure 9: Distribution of IPD ranges

its ability to classify such ranges, affecting CDN traffic steering
(see, for instance, [28]). The TOP20 subset tends towards smaller
networks. The TOP5 subset, part of TOP20, shows a distribution
similar to ’ALL’ but with a significantly larger proportion of /24
networks.

Takeaway. The traffic-based partitioning of the IP address space leads
to varying IPD range sizes that directly capture service dynamics (e.g.,
the granularity CDN server mappings). They are thus unrelated to
BGP prefix size and should also not be kept static (e.g., /24 only) to
enable CDN traffic steering.

5.3 Traffic and Ingress Point Dynamics

Dynamic ingress point changes due to traffic engineering, CDN
adjustments, and infrastructure upgrades necessitate frequent IPD
updates for ISPs. Our temporal analysis from an ISP’s standpoint
highlights these fluctuations, particularly during peak traffic peri-
ods. As we will show, dynamics are time dependent: stability during
peak traffic times largely differs from stability throughout the day.

While these are not directly actionable results, they intend to
inform IPD users about what to expect from an IPD prefix/range.
Network operators are used to understand routing tables, more
specific prefixes, etc. Since the IPD is a traffic-based aggregation of
the IP address space rather than a routing/allocation-based aggre-
gation, it is relevant to highlight how the granularity of the prefixes
follows traffic patterns.

5.3.1 Longitudinal Ingress Point Stability at Prime Time. We eval-
uate ingress point stability over extended periods. We examine if
addresses that ingress at a particular link today will still ingress
at the same link in one day, one week, one month, or one year
from now. Note we explicitly refrain from comparing IPD ranges
to avoid bias from the algorithm’s dynamic aggregation adjust-
ments. Instead, we directly compare the stability of addresses in
the mapped space.
Approach. We study this longitudinal behavior by evaluating the
stability of one timestamp ¢ to all following timestamps 3 in a
specified interval such as once a day. As time of day, we chose
a high-traffic busy hour at 8 PM local time, which refers to the
busiest period for this ISP in which the most traffic is being carried.
Optimizing traffic at prime time can be a relevant objective from
an operational perspective.

Our analysis is twofold. First, we evaluate how much address
space from timestamp #; still exists at t2. To accomplish this, we
create an LPM trie with all prefixes from #; and looked up the
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addresses of each prefix that exists at t;. We refer to addresses that
exist both at t; and t3 as matching. Second, we define addresses as
stable if they exist at both timestamps t; and t; and ingress at the
same link. We define addresses as unstable, when they ingress at
different ingress links at both timestamps #; and t3.
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Figure 10: Per-prefix ingress point stability at 8 PM

Results. In Figure 10, we show the relative ratios of both (i) match-
ing and (ii) stable addresses for various combinations of timestamps,
t1 to all subsequent 3, as time series plots. For 1, we selected the
timestamp "2018-07-20 8 PM’, and the interval is set to once a day.
In Figure 10, we observe a consistent trend: the matching share
drops significantly after a few weeks, reaching a different plateau.
Further, the matching ratio decreases to approximately 60%. This
implies that only 60% of the prefixes or portions thereof from t;
are present in the corresponding t;. The proportion of prefixes that
remain at the same link initially drops, stabilizes at around 50%, and
then steadily decreases over time, with hardly any prefixes from t;
remaining on the same link after September 2020.

In the case of TOP20 and TOP5 (not shown), the relative share

of matching prefixes is slightly higher. Similarly, the stable share
declines and then maintains a relatively low and constant level of
around 20%.
Takeaway. By focusing our analysis on the comparison of a specific
timestamp every day, we observe that, after just a few weeks, both
matching and stability shares decrease significantly. This suggests that
ingress points exhibit highly dynamic behavior over time, emphasizing
the need for frequent IPD measurements to consistently maintain an
accurate picture.

5.3.2  Ingress Point Stability Throughout the Day. The stability of
ingress points at prime time does not mean that ingress points are
also stable throughout the day. Traffic patterns change over the
day (diurnal pattern [8]), and as a result, the output of the IPD is
also expected to exhibit similar dynamics. Therefore, we will study
the dynamics of ingress point mappings throughout the day. We
will show that the number of IPD prefixes fluctuates substantially
over the day while the number of classified IP addresses (i.e., the
mapped address space) remains stable.

Approach. We aggregated the distribution of prefixes per mask
(in other words: the network size) for all TOP5 ASes for the period
from 2018-01-01 to 2020-12-31 at a representative day. We show the
resulting distribution in Figure 11. The top plot shows the classified
IP address space while the plot at the bottom shows the relative
number of IPD prefixes. The y-axes of both plots are normalized
to the maximum number of mapped IP addresses or IPD prefixes,
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Figure 12: CDN Behavior: Network size distribution of AS4
over the period of 2018 to 2020

respectively. The colors in the plots represent the network size
based on the network mask (see the legend on the right side).
Results. While the address space (number of prefixes weighted by
mask) remains relatively stable, with a slight decrease during the
afternoon, the number of prefixes undergoes notable fluctuations. It
decreases to 70% by 6 AM - 7 AM, subsequently experiences a slight
increase, peaking at 4 PM, and maintains this level throughout the
evening. This variability in the number of prefixes can be attrib-
uted to the dynamics of ingress traffic. During periods of lower
traffic, larger IPD ranges appear to emerge because sibling CIDR
ranges receive traffic from the same ingress point, and there is less
overall traffic within the network that requires classification. Fur-
thermore, demand-based traffic engineering may result in prefixes
being completely excluded from the IPD dataset. This occurs when
a request from the CDN is mapped to a different server, causing
specific prefixes to fall out of the classification of IPD.
Takeaway. While the size of the mapped address space remains
relatively stable throughout the day, the number of IPD prefixes—and
thereby their granularity—varies substantially over the day. This is a
consequence of merging prefixes in low traffic periods at night time
and early morning and splitting into more specific ones after peak
traffic at prime time.

5.3.3 IPD Prefix Dynamics in Detail. There are various reasons for
ingress point or IPD range changes. To take a detailed look at these
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dynamics, we next examine the address space of AS4 (which is a
CDN) that we study in § 5.1.2. CDNs use a network of distributed
servers to deliver content faster by redirecting users to CDN servers
in their proximity [10, 20, 27]. This dynamic redirection can affect
CDN traffic entering the ISPs network from different ingress points.
As we will discuss in § 5.8, one motivation for ISPs to run IPD is
to implement collaborative CDN-ISP approaches to optimize the
incoming traffic.

We now study the effect of CDN dynamics on the IPD. Similar to
the previous section, we show the size of the mapped address space
(top) and the number of IPD prefixes (bottom) for the address space
of the selected CDN in Figure 12. While the size of the mapped
address space remains relatively stable throughout the day, similar
to what we observed for TOP5 ASes in Figure 11, we now notice a
clear diurnal pattern when focusing on the number of prefixes, as
indicated in the lower plot. These findings align with our analysis,
where we investigated the reasons for IPD classification misses, as
shown in the lower plot of Figure 8. After reaching a peak value at
4PM, the number of prefixes decreases to less than 40% by 6 AM.
Most range sizes are consolidated during this time, meaning that /26
to /22 networks are aggregated into larger networks. In the upper
plot, it is evident that the number of addresses from /13 networks
increases. This is likely an artifact of a demand-based mapping
strategy employed by AS4. We also examined other ASes within
the TOP5 group. We also observed fluctuations here, but they were
less pronounced and occurred at various times throughout the day.

5.3.4 Reaction to Changes. To study how the classification reacts
to change (e.g., how IPD captures traffic shifts), we now focus on a
specific IP range within the AS. This discussion also aims to exem-
plify parts of the IPD operation on a practical example. Figure 13
shows various classified IPD ranges within a /23 CIDR prefix. Differ-
ent colors represent distinct ingress points, including their ingress
routers, links, and countries. The opacity of the colors indicates
whether the ingress has been classified for that time—full opacity
means it has, while reduced opacity suggests that the algorithm
has been monitoring the range, but the minimum flow count or
confidence level has not yet been reached. Since the /23 range
has two ingress points for most of the time, the range is split as
needed. As a result, traffic from ’x.y.196.0/25” and ’x.y.197.0/24’ both
consistently enters through the same ingress point until July 14,
2020. Afterward, the interface changes. Notably, the former range
experiences occasional gaps in classification due to lower traffic,
explaining the larger discontinuities. The ingress point change on
July 14, 2020, is particularly interesting because it coincides with an
ISP router maintenance event. During this event, the router device
was either replaced or upgraded. The subnet ’x.y.196.128/26’, which
is between the two ranges above, enters through a different ingress
point. Starting from July 26, 2020, the range is entirely excluded
from IPD classification, and classified again as aggregated prefix
’x.y.196.0/23’ on July 29, 2020, through the red ingress.

Figure 14 provides a detailed view of the 'x.y.197.0/24’ range.
Each color still corresponds to a unique ingress point, with opacity
indicating the classification state. The lower graph displays counters
for each ingress point, with a gray dotted line depicting the total
counter. The upper graph represents the confidence as a blue line
and minimum classification values as a red dashed line. The sample
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Figure 13: Classification status of different IPD ranges. Colors
represent different ingress points, including countries (Ci),
routers (Ri), and links. Full opacity indicates classified ranges,
while low opacity indicates ranges that are not classified yet.
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Figure 14: Detailed view of prefix x.y.197.0/24. Clearly visible:
The ingress change at 2020-07-14.

counter constantly increases until the maintenance event, with
the confidence continuously maintained. During the maintenance
event, the range is excluded from classification but is reclassified at
a different interface shortly after.

Takeaway. IPD can quickly detect ingress point changes, enabling it
to maintain an accurate state.

5.4 Characterizing Elephant Ranges

Some IPD ranges have very large sample counts. This can be either
due to (i) a persistent ingress over a long period of time or (ii)
a significant amount of traffic entering the same ingress point.
Following the terminology of Curtis and Benson [2, 5], we refer to
these as elephant ranges.

We analyze the top 1% IPD ranges with the highest sample coun-
ters (7,818 distinct ranges). 33.4% of those are PNI links, 10.9%
(26.3%) belong to the TOP5 (20) ASNs, respectively. The range sizes
roughly follow a normal distribution, with /17 ranges being the
most prevalent (not shown). It is worth noting that most ranges do
not originate from the address spaces of the TOP5 or 20 ASNG.
Stable for long periods. Figure 15 compares the stability of ele-
phant to all ranges (denoted as ’ALL baseline’). To compute the
duration of stable phases, we tracked how long the sample counter
monotonically increased for each range. While 60% of all ranges
are stable for an hour or less, the stability of elephant ranges is
typically in the order of months.

We next analyze the number of new flows entering the network
for each time bucket and prefix. On average, we observed that there



ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

1.0 -
”“
. 08 7
S ”
£ 0.6 -
I} > ALL
S04 L2 TOP5
o P -=- TOP20
o -/ ALL baseline
0.0 +=FmaRE s e T = T T T T T T
15min  1h 6h 1d 1w Im 3m 9m
duration

Figure 15: Stability of elephant ranges

are 2,000 new flows for the TOP20 prefixes and up to 10,000 for
ALL prefixes within each time interval. This leads us to conclude
that the high sample counts are likely a result of consistently stable
ingress points, rather than sporadic, large traffic bursts.
Takeaway. IPD ranges with high counter values exist. They could
easily be (mis-)interpreted as high traffic volumes, however, they more
often result from long stability phases.

5.5 Path Asymmetry: IPD vs. BGP

Inferring ingress points is in practice sometimes simplified by taking
easy to obtain BGP feeds and assuming path symmetry. Having the
IPD deployed, we can evaluate this practice and shed light into the
path (a)symmetry from the perspective of this tier-1 ISP—showing
that BGP should not be used.

Approach. We compare IPD ingress routers with egress routers
from historical BGP table dumps for each timestamp. Given that IPD
traffic-derived ranges and BGP prefixes don’t align, we categorize
them into three scenarios: a) exact matches, b) IPD ranges more
specific than BGP prefixes, and ¢) IPD ranges less specific than BGP
prefixes.

BGP and IPD prefix correlation. Predominantly, IPD ranges are
more specific than BGP prefixes (91%), highlighting that parts of a
single BGP prefix can have different ingress points. Thus, even if
we (unrealistically) assume path symmetry, using BGP for ingress
point detection would be too coarse to capture ingress points. Exact
matches are rare (1%), underscoring the distinct nature of IPD ranges
from BGP data. IPD ranges being less specific than BGP prefixes
(8%) shows cases in which neighboring BGP prefixes share ingress
points and can thus be joined into larger IPD ranges.

Takeaway. Most IPD ranges (91%) are more specific than BGP ranges,
which highlight diverse ingress pattern within a single BGP prefix.
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Figure 16: Traffic symmetry ratios over time
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Path asymmetry. We evaluate path asymmetry by comparing
ingress (IPD-derived) and egress (BGP-derived) points for all pre-
fixes, and specifically for TOP20, TOP5, and tier-1 ASes from 2017
to 2022. Figure 16 shows their symmetry ratios. Our analysis reveals
that, on average, 62% symmetry is observed across all prefixes, with
TOP20 ASes at around 61%, and TOP5 ASes significantly higher at
77%. Notably, tier-1 ASes achieve a remarkable average symmetry
of 91%.

These symmetry rates surpass those reported in prior research [11,
12], aligning instead with recent findings at IXPs [3], where symme-
try rates ranged from 79-88% for prefixes (66-86% at the AS-level) [3].
Our approach is distinct as it assesses if ingress and egress routers
coincide, diverging from other methodologies that rely on active
path measurements.

Takeaway. We observe a substantial amount of path asymmetry,
highlighting that egress and ingress points differ. Due to the asymme-
try, BGP cannot be used to predict ingress points.

5.6 Case Study: Identifying Possible Peering
Agreement Violations

This section explores another application of IPD: identifying po-
tential violations of settlement-free peering agreements, where it’s
expected that traffic from a peering network enters directly via
peering links, not through third parties.
Approach. We monitor the ingress of prefixes of 16 tier-1 ISPs
(from daily BGP dumps), to check if traffic from these peers by-
passes direct peering links. Traffic from a tier-1 AS entering our ISP
network through non-peering links may indicate possible peering
agreement violations.
Results. Between March 2018 and December 2021, about 9% of
tier-1 ISP prefixes entered our ISP indirectly, possibly indicating
peering agreement violations. Such situations can strain peering
links, leading to congestion and degraded performance. Figure 17
illustrates the absolute frequency of these instances, categorized
by ISP. An upward trend in potential violations is apparent, with
the number of such instances increasing by 50% from September
2019 and doubling by 2020 across all tier-1 ISPs studied.

It is important to note that we cannot confirm violations with-
out access to the peering agreements. Yet such traffic patterns are
generally unexpected among peering partners.

5.7 Operational Deployment

IPD is deployed at the tier-1 ISP for the past six years. Next, we
briefly discuss the deployment setup and the resource requirements.

The tier-1 ISP effectively operates the IPD on a single 48-core
server with 500 GB of RAM. This machine can handle the incom-
ing flow records from all ~ 3,000 routers. Recent data captured
at the deployment server reveals that, on average, the machine
receives and processes live 300 billion flow records per day and
4 million flow records per second on average. During peak hours,
the server processes 22 billion flow records/hour and 6.5 million
flow records/second.

To handle this load, the server has an average load of 30 cores,
which results from the processes that handle incoming flow data
and a single-core process that executes the central part of the IPD:
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mapping the ingressing flows to IPD ranges. The typical total mem-
ory consumption of all processes is 120 GB (120 MB per flow reader
process, the rest for the primary IPD process). Thus, the 48-core
server with 500 GB of total RAM is far from fully loaded. This single
server runs the IPD for the entire tier-1 ISP.

Note that the IPD parametrization impacts the memory con-
sumption, as we show in Appendix A. Here, setting a more specific
cidrmax than /28 for IPv4 (/48 for IPv6) as in our case, e.g., /29 or /30,
will increase the number of IPD ranges and thus the amount of state
needs to be managed by the IPD process and hence will increase
the memory consumption. Given the current traffic dynamics of
hyperscalers (e.g., CDNs), such a change is unnecessary.

These deployment statistics show that resource requirements for
running IPD at a major ISP are relatively moderate: a single server.

5.8 Operational Experience

IPD enables ISPs to better run their networks by identifying where
traffic enters their networks. The deployment of IPD at the studied
tier-1 ISP gave further insights into operational experiences and
considerations, which we will briefly discuss in this section. At the
studied tier-1 ISP, IPD enabled the ISP to better debug performance
problems and to run data-driven products that optimize traffic
engineering.

“Why is service X slow at home in only one city of an ISP’s
network?” The studied tier-1 ISP also operates a residential access
network with ADSL and FTTH access lines. In one situation, the
IPD enabled the ISP to quickly identify a performance problem,
in which a major Internet service was slow in a certain city-level
region—yet it was slow only for FTTH customers, not for ADSL
customers in the same city. The IPD revealed a CDN-based mapping
problem. Here, the traffic to prefixes assigned to FTTH customers
entered the ISPs network in a different, further away country than
the traffic to the ADSL customers in the very same city. The reason
was that the CDN mapped them differently and selected different
data centers. The IPD identified this issue and enabled the ISP to
resolve the mapping problem with the CDN. Resolving it would
have been possible without IPD, but it is way more cumbersome
and resource-intensive. This highlights a major strength of the IPD
for ISPs: i.e., to quickly gather enough debugging information to
be able to talk to interconnected networks.
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IPD further helps to display non-optimal routes, e.g., CDN traffic
that enters the ISPs’ network via non-direct links. One example are
networks that hand-over traffic in other countries via other ASes
while having a local presence and direct links (e.g., direct, private
connections between two ASes, referred to as Private Network
Interconnect) to the ISP. Such events can be the result of overflow
events [4]. They are sometimes detrimental to network performance.
Yet, IPD can easily reveal their existence, e.g., via dashboards.
ISP-CDN collaboration. The use of the IPD enabled the ISP to
create data-driven products that can be used for traffic engineer-
ing. The studied ISP uses the IPD as one component to build a
platform [28] that enables automated cooperation between the ISP
and CDN:ss to jointly optimize traffic engineering. This problem is
referred to as hyper-giant traffic steering and aims to jointly solve
two complex operational problems: i) performing inbound traffic
engineering by the ISP and ii) mapping user to servers by the CDN.
When does IPD not work well? The IPD primarily aims to opti-
mize ingress traffic engineering (e.g., CDN-ISP traffic steering, see
above) and identify problems requiring network operators to deter-
mine how traffic enters their network. While this sounds simple,
it is a problem that even major ISPs can struggle to solve, which
thus resulted in us developing IPD. Consequently, any problem that
does not fall into this category is beyond the scope of what we aim
IPD to be used for.

Yet, we omitted a specific aspect in the design of IPD, which can
result in operational issues: router level load balancing. To simplify
the design of IPD, we have intentionally not considered router-level
load balancing over multiple routers.

Yet router-level load balancing can occur in practice—in our
case, it is just too infrequent to be worth considering. An operation
issue occurred once in the deployment history, where a directly
connected hypergiant balanced traffic over two routers. This re-
sulted in IPD being unable to classify the corresponding prefixes
of this hypergiant accurately. We have discussed if this problem
should be solved and decided against accounting for router-level
load balancing.

The reason is that detecting this kind of load balancing requires
tracking both the destination IPs and the source IPs. However,
keeping all (source, destination) IP pairs results in a quadratic addi-
tional state complexity and, thus, memory/RAM utilization. Since
router-level load balancing by the networks connected to this tier-1
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ISP rarely occurs, we decided that this substantial additional RAM
usage is not worth the benefit of adequately handling the very
few cases of load balancing (which can also be solved by asking
interconnected networks to change their configuration).

This design decision is based on our experience and works for the
ISP where IPD is deployed. However, other network operators might
have different requirements, and thus, an extension of IPD in future
work to handle router-level load balancing might be of interest. For
example, by tracking the (source, destination) IP address pairs.

6 RELATED WORK

This work provides the first approach for detecting traffic ingress
points at ISPs without using BGP.

Ingress Point Detection. Closest to and parallel to our work
is TIPSY [22], which focuses on the traffic properties of major
cloud provider, whereas IPD is tailored to the traffic dynamics of
ISPs. TIPSY aims to statistically model ingress traffic volumes and
points for each /24 prefix, while IPD aims to capture the traffic
dynamics of hyperscalers such as clouds or CDNs at dynamic prefix
sizes (see § 5.2). TIPSY’s ingress traffic volume mapping approach’s
primary motivation is to enable congestion management at a major
cloud provider. It enables the congestion manager to predict the
effect of shifting traffic by selective BGP withdrawals to mitigate
congestion, for prefixes observed in a training period. In contrast,
IPD assumes the ingressing IP space to be highly dynamic and
thus always maps the entire address space without requiring a
learning period or input from BGP. Further, the ingress points at
ISPs exhibit high dynamism, as we have observed in § 2 and § 5.3.
Therefore, the dynamic approach taken by IPD is optimized to
capture these dynamics, which is a major difference from TIPSY.
Therefore, TIPSY and IPD are two distinct solutions for ingress
point inference, optimized for hyperscalers and ISPs, respectively.
Traffic engineering. ISPs generally rely on traffic engineering [23]
approaches to steer the incoming or outgoing traffic. IPD supports
these approaches by informing the ISP where traffic enters the net-
work, enabling to decide if traffic steering is required. Classical
means of traffic engineering use BGP to alter paths [29]. While
ingress traffic engineering practices can be always overwritten by
the sending network, egress traffic engineering can be precisely
controlled by BGP (see e.g., how to control the outbound traffic of
stub ASes with BGP [33]). As BGP does not incorporate link loads,
it cannot balance or control link load. To address this limitation,
recent traffic engineering approaches utilize network programma-
bility to enable precise link load management. Examples include
software-defined WANSs such as B4 [16], SWAN [15], Espresso [35],
and Edge Fabric [30]. In contrast to these new centralized traffic
engineering approaches, earlier approaches used distributed algo-
rithms to control link load [19] or to manage path congestion [7].
Since egress traffic engineering by CDNs can be detrimental to
ISP performance, recent works proposed approaches for joint traf-
fic engineering and content placement by both the CDN and the
ISP [1, 6,9, 13, 17, 31], giving the CDN provider more control over
the end-to-end path [1], or using a centralized infrastructure or
parts of it [21, 34]. As discussed in § 5.8, IPD enables fine-granular
traffic steering in such settings. In this regard, IPD adds a valuable
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tool to the ISPs toolbox to enable more informed and fine-granular
traffic engineering.

7 CONCLUSION

We show that ISP ingress traffic is highly dynamic with frequent
ingress changes—optimal traffic management requires an online
algorithm to infer ingress points at minute granularity. Thus, we
introduce IPD, an online algorithm that solves a complex measure-
ment problem by analyzing (large) streams of continuous flow data
from all border routers. Its key idea is to partition the entire IP
address space into segments sharing the same ingress point. Unlike
prior work, it is agnostic to BGP, does not assume static prefix
sizes, and quickly adapts to ingress changes—that frequently occur
at (eyeball) ISPs, e.g., due to CDNs. IPD is highly accurate, with a
classification accuracy of 95 % for identifying the correct ingress
router and interface for prefixes that carry 80 % of the total ingress
traffic—those that ISPs aim to optimize for.

IPD has been deployed at a major tier-1 ISP for six years, dur-
ing which we have gained valuable insights in its operation. The
deployment experience shows that the approach can scale up to a
large international network handling high traffic levels and keep
up running for years. In our setting, IPD is running in real-time
on a single commodity server to continuously infer ingress points
from hundreds of border routers at multi-digit Tbit/s traffic levels.
This highlights that the IPD approach only has moderate hardware
requirements, even when run at a big network. While the presented
IPD satisfies the needs set in deployment by the tier-1 ISP, enhance-
ments are possible to suit needs in other deployments. A potential
enhancement would be incorporating a router-based load balancing
detection, which we did not include to keep the approach simple as
we found no empirical evidence that it would improve performance
in our setting.

The IPD enhances network operation by enabling ISPs to iden-
tify ingress traffic related issues (e.g., performance bottlenecks or
misconfigured CDN-based mappings) but also to launch enhanced
traffic engineering approaches such as CDN-ISP collaboration. Be-
yond operation, IPD can be a useful research tool since it enables
studying certain aspects of Internet traffic such as traffic dynam-
ics or routing asymmetries. From our deployment experience, the
biggest benefit of the IPD is not technical, but rather enabling ISPs
to easily gather sufficient information to talk to other networks
about fixing issues (e.g., CDN-related mapping problems).
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Table 2: The parameter study applied a full factorial design
using these factors and levels.

factor level(s)

t [60]

e [120]

q [0.501, 0.7, 0.8, 0.95, 0.99 ]
neigrfactory  [32, 48, 64, 80 ]

neiarfactors  [12, 18, 24,30]

cidrmaxa [ 20, 21, 22, 23, 24, 25, 26, 27, 28 ]
cidrmaxe [32, 34, 36, 38, 40, 42, 44, 46, 48 ]

Appendices are supporting material that has not been peer-
reviewed.

A FINDING THE GOOD IPD
PARAMETRIZATIONS

Since the IPD algorithm can be controlled by multiple parame-
ters (see § 3), the question emerges on how to choose a suitable
parametrization. Thus, we next aim to identify parameter sets that
enable the IPD to run at a major tier-1 ISP. To do so, we conduct
a systematic parameter study that uses a factorial design [26] to
evaluate a total of 308 distinct IPD parameter configurations against
traffic from a tier-1 ISP (see § 4). In the first step (§ A.1), we per-
form a factor screening of 108 configurations to identify parameter
ranges that impact the algorithm. This step identifies parameters
that have no impact and can thus be fixed and parameter sets for
which the IPD fails and are thus to be avoided. In the second step
(§ A.2), we study the impact of the working parameters to study
how they impact IPD performance. For a fine granular evaluation,
this step studies 200 configurations with more parameter levels
than the first (see Table 2). We show that many parametrizations
are practically feasible; while they do not largely impact the IPD ac-
curacy, they mostly impact its resource consumption. This enables
us to derive a parametrization that is used by the tier-1 ISP in its
deployment.

Experimental setup. In this study, we evaluate the IPD with dif-
ferent parameter sets against the 25 hours of Netflow collected
by the ISP on premise. Since the algorithm is deterministic, each
parameter set was run once. We defined three metrics to evaluate
the algorithm’s performance:

e Accuracy: To measure accuracy, we compare the results
of the IPD algorithm with Netflow data and determine how
many flows were correctly classified by the IPD.

o Stability Duration: This metric measures how long the
IPD algorithm classifies a stable ingress of a prefix on the
same link, depending on factors such as split and join events.
For an accurate predication of the ingress links, longer sta-
ble periods are preferred. For each set of parameters, we
compute a CDF representing the stability periods of each
range at an ingress point. To provide an objective measure of
comparison, we evaluate these CDFs in relation to an ideal
stability distribution, employing the Kolmogorov-Smirnov
Distance as a metric [18]. Given the absence of prior re-
search on the distribution of stable phases for prefixes at
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an ingress point, we explore various potential distributions,
such as normal, lognormal, Weibull, and Pareto. Through
these metrics, we gain the capability to accurately gauge the
similarity between the observed stable periods and the ideal
distribution.

e Resource Consumption: This metric measures the IPD
algorithm runtime for a time bucket and the RAM usage.
In a productive environment, operators can opt for a more
resource-efficient configuration, with the trade-off being
lower prefix specificity.

A.1 Finding Suitable Parameter Ranges

To determine the impact of IPD configuration parameters on the
target metrics, we first perform a factor screening experiment to
find out the algorithm’s limits followed by a parameter study in a
full factorial design to evaluate the performance of the algorithm.
In light of this factorial design, we will refer to IPD configuration
parameters such as g or cidrmgx as “factor” and their setting as
“level”. We implemented a conditional parameter setting for the
factor levels of n.;q, factor and cidrpax for IPv4 and IPv6, respec-
tively, to ensure that both factors are always set together, thereby
avoiding any confounding effects that may arise if they were varied
independently.

To identify the factors contributing to the performance outcomes
of our metrics, we performed an Analysis of Variance (ANOVA)
analysis for each metric [32]. ANOVA is a statistical method to test
if differences in the mean of two groups are systematic or simply
random. In our case, we use the ANOVA to check if parametrizations
have a systematic impact on IPD, expressed in the different metrics.
Parametrizations to be set static or to avoid. Our factor screen-
ing experiment yields two important insights: (a) The factors decay
and e do not have a significant effect on the performance metrics,
and thus, they can be fixed to a single value for subsequent ex-
periments. (b) We find certain parameter sets for which the IPD
algorithm fails. A cidrpax value that is too low, such as 12 for IPv4,
does not result in many classifications, while a value that is too high
causes a significant increase in runtime and memory consumption.
Furthermore, if the parameter q is less than or equal to 0.5, some
ingress points may be classified ambiguously. For the parameter
study experiment we have carefully chosen factor levels that en-
sure all parameter sets produce meaningful results, allowing us to
investigate their influence on the presented metrics. Table 2 shows
the factors and levels that we applied.

A.2 How do Paramerizations Impact IPD

We now study how the suitable parameter ranges identified in
(§ A.1) impact the IPD performance.

Accuracy. We find that the parametrization does not influence the
IPD accuracy. We find consistent accuracy figures for all parame-
ter sets, with an average accuracy of 90.8 %. Later, we will show
in § 5.1 that the IPD algorithm works accurately in deployment and
our results in this parameter study are consistent with the later
deployment.

Stability Duration. We find the parameters q and cidrpyqx to in-
fluence the duration of stable phases (see Figure 19). Both, the
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bution. The parameters cidryqx and g impact the stability.

Kolmogorow-Smirnow distance and the average prefix stability re-
veal a similar trend: higher values of ¢ lead to longer stable phases.
The smallest distance to the ideal distribution is achieved when
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cidrmax is set to 24. Based on the average parameter values, we
observed that setting cidrmax to more specifics than /25 results in
longer stable phases.

Resource Consumption. The algorithm’s runtime and memory
usage are impacted by the number of ranges to be classified. In-
creasing cidrmgx results in finer-grained classification but also ex-
ponentially increases the number of ranges to be checked. Figure 20
illustrates this effect. Changes to q or n;q4, factor also impact the
metrics, albeit to a lesser extent. Configurations with high g values
combined with low ng;g, factor values lead to more frequent pre-
fix dropouts. In such cases, only a few samples are necessary for
classification, but the high value of g permits only a small amount
of noise. As a result, situations can arise where the state of each
(masked) IP must be held for each range until reclassified (as dis-
cussed in § 3). This in turn leads to longer runtimes and more RAM
consumption.

Takeaway. A broad range of possible parametrizations exist that will
work in practice. While they have relatively little impact on accuracy,
they mostly impact convenience settings such as resource consumption
or mapping stability and can thus be adjusted to practical needs.
Parametrization at the tier-1 ISP. In the deployment, we opted
for a q value of 0.95, which results in longer stable phases on av-
erage. We use n.;q, factor values of 64 and 24 for IPv4 and IPv6,
respectively, as a good trade off between resource consumption and
prefix stability. Since the ISP required to prefixes specific enough to
capture ingress point changes due to CDNs and traffic engineering,
we set cidrmgy to /28 and /48 for IPv4 and IPv6, respectively.

B EXAMPLE IPD OUTPUT TRACE

We show an example raw output of the IPD in Table 3. The confi-

dence value sjpgress is derived from the sum of all samples Ssolumn
Sipcount)- The "Ingress” column first shows the router with the high-

est current sample count for the range (the most prevalent ingress
candidate). In parentheses, all ingress points and their traffic share
are shown. This would enable congestion management, e.g., as in
[22]. Note: For stage 2 of the algorithm, as it is currently used in
deployment, this data is further filtered to include only prevalent
ingress points.
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Table 3: Raw IPD output. 6 years of IPD data from deployment at a tier-1 ISP serve as our main data set.

timestamp ip = Singress  Sipcount Mcidr range ingress

1605571200 4 0.997 4812701 6144 x.y.0.0/16 C2-R2.4(C2-R2.4=4798963,C2-R3.54=12220, ...)
1605571200 4 1.000 1503386 543 x.y.104.0/23  C3-R20.7(C3-R20.7=1503296,C3-R20.14=90)
1605571200 4 1.000 4228708 543 x.y.106.0/23  C2-R30.1(C2-R30.1=4228502,C3-R20.24=201, ...)
1605571200 4 0.974 2262 192 x.y.65.64/26 C1-R1.1(C1-R1.1=2204,C3-R11.10=58)
1605571200 4 0.999 2441 192 x.y.149.192/26 C4-R11.21(C4-R11.21=2438,C3-R4.11=3)
1605571200 4 0.510 29996 96 x.y.65.32/28 C1-R1.1(C1-R1.1=15305,C3-R11.10=14691)
1605571200 4 0.722 433064 96 X.y.65.48/28 C3-R11.10(C3-R11.10=312631,C1-R1.1=120433)
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