IPD: Detecting Traffic Ingress Points at ISPs

•Stefan Mehner, Helge Reelfs ,

[•]Ingmar Poese, Oliver Hohlfeld

- University of Kassel
- Brandenburg University of Technology
- BENOCS

"Why is *\$service* slow for some customers?"

Problem: incorrect CDN mapping of customer prefixes

Easy to find mismatching source IP for subscribers

Hard to find source IP ingress point into ISP

Ingress Traffic Engineering

Use Case: CDN-ISP traffic steering

Map Subscribers of the ISP optimally to the CDN servers

Challenge: Where does the traffic enter the ISP?

Solution: ingress point detection enables detection

Design Challenges

Scale

Design Challenges

Granularity

Design Challenges

Traffic based aggregation of IP ranges

Need: tracking granularity at CDN mapping granularity

Challenge: dynamically infer aggregation prefixes from traffic

Design Aspects

Design Aspects

Continuous monitoring

Design Aspects

Focus on high-traffic prefixes

Ingress Point Detection at ISPs

Requirements:

- No-Input:BGPScope:All ingress points
Source address trackingInput:Netflow
Link ClassificationGoal:Focus on high volume prefixes
Find dominant ingress pointScale:1000s of routers
Continuous monitoringGoal:Focus on high volume prefixes
Find dominant ingress point
 - Aggregate Ips into dynamic IPD ranges

Goal: only collect and prepare incoming data

find dominant ingress point

 t_0

tı

 t_2

BENOCS

t₃

Parameter Study

Parameter study with 300+ combinations to infer optimal parametrization

System Requirements

Our IPD has been running algorithm at a Tier-1 ISP for 6 years

Single commodity server for an entire ISP is enough ~30 cores + 120GB RAM in use

IPD classifications are accurate

Matching IPD results against Netflow

97,4% for top 5 ingress ASes by traffic volume Reasons for inaccuracies: • traffic shifts • operational changes • noise • Maliaiawa (are a feed we alwate

• Malicious/spoofed packets

•••

IPD works well enough in practice for the ISP to build services on top

Don't assume path symmetry

IPD enables first Tier-1 measurement study on path asymmetry

BGP and IPD prefix sizes differ

IPD optimally adapts to ingress traffic dynamics

Operational Experience

IPD enables: Network troubleshooting

CDN-ISP Collaboration / joint ingress traffic engineering

Detecting and watching ingress points in real time

Comparison of BGP to traffic behavior

IPD omits: Router-level traffic load balancing

IPD is a valuable tool to the tier-1 ISP that is in operation without change for 6 years

Mini-IPD: Do it yourself IPD Prototype

Prototype IPD implementation:

https://github.com/smehner1/ipd

IPD in an emulated ISP scenario with CDNs:

https://github.com/smehner1/mini-ipd

IPD: Ingress Point Detection at ISPs

Stefan Mehner, Helge Reelfs,

Ingmar Poese, Oliver Hohlfeld

Thank you. Questions ?

Traffic based partitioning the IP address space into dynamic prefixes sharing the same ingress point

Scales to a tier-1 ISP on a single server

github.com/smehner1/mini-ipd

Backup

IPD vs. TIPSY

	TIPSY	IPD
Focus	Cloud Provider ISP	
Method	Statistical model of ingress traffic volumes and points Predict effect of shifting traffic by selective BGP withdrawals for prefixes observed in training period	Traffic-based partitioning of the entire IP address space
Granularity	/24	Dynamically up t o a predefined maximum CIDR mask (/28 in operational setting)
Use Case	Case Congestion Management Joint CDN-ISP traffic s	

3 types of misses can/do happen

IPD Parameter

Parameter study: 308 combinations

Parameter	Default	Meaning	factor	level(s)
cidr _{max}	/28, /48	max. <i>IPD</i> prefix length	t	[60]
n _{cidr} factor	64, 24	minimal sample factor $n_{cidr} = n_{cidr} factor * \sqrt{2^{(32-s_{cidr})}}$	- l e	
q	0.95	error margin	q	$\begin{bmatrix} 0.501, 0.7, 0.8, 0.95, 0.99 \end{bmatrix}$
t	60	time bucket length	$= n_{cidr} factor_4$	[12, 18, 24, 30]
е	120	expiration time	_ cidr _{max4}	[20, 21, 22, 23, 24, 25, 26, 27, 28]
decay	$1 - \frac{0.9}{\left(\frac{\text{age}}{t}\right) + 1}$	factor to reduce outdated <i>IPD</i> ranges	cidr _{max6}	[32, 34, 36, 38, 40, 42, 44, 46, 48]

Evaluation of each parameter set against 1 day of Netflow

IPD parameter do not change accuracy, but run-time and resource consumption

