
Dynamic Algorithm Selection for the Logic of
Tasks in IoT Stream Processing Systems

Ehsan Poormohammady, Jens Helge Reelfs, Mirko Stoffers, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University, Aachen, Germany

ehsan.poor.mohammady@rwth-aachen.de,
{reelfs,stoffers,wehrle}@comsys.rwth-aachen.de

Apostolos Papageorgiou
NEC Laboratories Europe

Heidelberg, Germany
apostolos.papageorgiou@neclab.eu

Abstract—Various Internet of Things and Industry 4.0 use
cases such as city-wide monitoring, Smart Grid control, or
machine control, require low-latency distributed processing of
continuous data streams. This fact has boosted research on
making Stream Processing Frameworks (SPFs) IoT-ready, mean-
ing that their cloud and IoT service management mechanisms
(e.g., task placement, load balancing, algorithm selection) need
to consider new requirements derived from IoT-specific char-
acteristics, i.e., ultra low latency due to physical interactions.
Although various extensions have appeared to optimize such
SPF-provided mechanisms, they still lack the modules, data
models, and algorithms to properly handle algorithm selection
in IoT deployments. The algorithm selection problem refers to
selecting dynamically which internal logic a deployed streaming
task should use in case of various alternatives. To the best of
our knowledge, this work is the first solution that adds this
capability to SPFs. Our solution is based on i) architectural
extensions of typical SPF middleware, ii) a new schema for
characterizing algorithmic performance in the targeted context,
and iii) a streaming-specific optimization problem formulation.
We implemented our solution as an extension to Apache Storm
and demonstrate how it can reduce stream processing latency by
up to a factor of 2.9 in the tested scenarios.

I. INTRODUCTION

While the Internet of Things and Industry 4.0 have become
very prominent in public, they have also become a very
active hot topic in research. In the consumer section, things
are becoming smarter by adding diverse sensors for any
purpose, while the same holds for industrial automation.
This development and the general paradigm shift leads to
enormous amounts of data. The term Big Data describes
approaches for dealing with such huge amounts of data, but the
storage schemes and the complex processing involved in Big
Data technologies makes them miss an important factor: low
latency [1]. Low latency is a critical requirement for industrial
setups which depend on control loops for machines, e.g., for
synchronizing power sources or other Smart Grid elements [2].
Due to the missing low-latency capabilities of classical Big
Data (store first, process afterwards) approaches, a different
processing technique becomes the method of choice: processing
data streams on the fly. Thus, rather new emerging Stream
Processing Frameworks (SPFs) [3–5] are gaining significant
attention as they fundamentally differ to classical Big Data
solutions and promise being the silver bullet for low latency
scenarios.

However, the service management solutions of current SPF
implementations often fail in providing ultra low latency
for IoT / edge-computing use cases, although the research
community has identified this as a shortcoming and is actively
working on approaches for adding the required capabilities
[6, 7]. Different techniques can be applied in order to optimize
stream processing latency, including task allocation, task
replication, load balancing, load shedding, processing topology
adaptations, and more [8].

Among the aforementioned techniques, Algorithm Selection
is a very promising approach for reducing processing latency
in certain scenarios. Algorithm selection assumes having
a choice between different variants, flavors, algorithms, or
implementations of functionally equivalent building blocks,
which may have different behavior during execution. It deals
with the problem of selecting which version of such a building
block to use. We pave the way for more involved Algorithm
Selection schemes via the following tightly-coupled main
scientific contributions of this paper:

• We designed a generic SPF model based on state-of-the-
art SPFs, and added architectural extensions required for
Algorithm Selection on top.

• We developed a data modeling schema for characterizing
algorithm performance with regard to a) device compu-
tational power and resources and b) stream-specific data
input rate.

• We provided a stream-specific optimization problem
formulation to Algorithm Selection, which allows for
efficient reasoning solutions.

• We evaluated and showed the feasibility of our approach
by implementing it as an extension of Apache Storm.

We give detailed background information and an overview of
related work in Section II. Afterwards, in Section III, we present
a generic model of SPFs, and discuss benefits of Algorithm
Selection in SPF IoT settings. More importantly, we extend
our generic SPF model with new modules and algorithms for
enabling Algorithm Selection. In this section, we also introduce
a required new method for characterizing algorithms in the SPF
context. This paper finishes with an evaluation of our Proof of
Concept implementation within Apache Storm in Section IV
and a final conclusion.



Page 1 

Overview of SPF functionality 

c1 

Developers provide... 

Computation 

Topology 

descriptions 
c1->c2->c3->c4 

Deployable 

Implementations 

of Components 

Deployment 

Settings, 

Preferences, 

Restrictions 

... 

... 

Stream 

Processing 

Framework 

data 

source 

t4 

Network 

Topology 

descritpions 

c2 

c3 c4 

data 

source 

data 

source 

...for... ...deployment on 

processing nodes 

t3 

t4 

t2 

t3 

t2 

t1 
t1 

Fig. 1. Overview of SPF functionality. Given certain input from the developer,
SPFs allow the easy deployment of stream-computation architectures.

II. BACKGROUND AND RELATED WORK

Stream Processing Frameworks (SPFs) are solutions that
facilitate and manage the execution of distributed applications
that consist of multiple processing steps which act upon data
streams, i.e., continuously consume and produce data items
(also called tuples). These processing steps use the output
of previous steps while they provide input to the next ones,
so that the steps typically run sequentially or according to a
DAG (Directed Acyclic Graph). A high-level overview of SPF
operation is shown in Figure 1. However, note that different
SPFs, e.g., Apache Storm [3], Samza [4], or Heron [5], use their
own terminologies and may differ in detail. Developers provide
the sequence (topology) of steps (components) that is to be
executed, along with the implementation of each component and
required settings (e.g., desired number of instances for each step,
desired number of used devices) to the SPF. The framework
then generates one or more instances of each component (tasks)
and deploys them on the hosting devices (nodes). Afterwards,
the data stream flows through the tasks, e.g., as shown by
the arrows on the right side of Figure 1. Together with our
extensions, we will provide more information about the SPF
internal structure and operation in Section III.

Although SPFs appeared rather recently, research on (non
SPF-supported) stream processing exists since at least two
decades. E.g., [8] provides a good overview of stream pro-
cessing optimization categories. These include approaches for
optimal task deployment, load balancing, algorithm selection,
and more. They can be diversely approached, where all
solutions highlight their benefit in different scenarios. For
example, to load balance, [9] presents a method for minimizing
both, the maximum and the variance of load implemented
by distributing the tuples based on capabilities and status
of nodes. Similarly, the earlier work of [10] contributed a
language that allows developers to specify rules about how
load balancing shall be performed. Further, [11] and [12] have
extended Apache Storm to enhance task placement mechanisms
based on new runtime statistics captured by specialized loggers
and network monitors. However, the optimization category
of algorithm selection (cf. [8]) has neither been enabled for

SPF architecture & Algorithm Selection extensions 

Page 1 

Stream Processing Framework 

Orchestration middleware 

Node middleware 

Cluster 

Manager 

Node 

Classifier 

Centralized or distributed but 

exists only once for the SPF 

A copy exists on every node 

on which tasks can be deployed 

Task 

Container 

Resource 

Monitor 

Messaging 

Agent 

Task 

Allocator 

Task 

Deployer 

Messaging 

Broker 

Node 

Manager 

Task 

Locator 

Algorithm 

Selection 

Reasoner 

Algorithm 

Classifier 

Node 

Classifier 

Agent 

Fig. 2. Generic SPF middleware architecture. Our extensions for enabling
algorithm selection are shown in blue, shaded, dashed boxes.

modern SPFs, nor sufficiently explored as an optimization
problem. To the best of our knowledge, no current SPF
architecture provides support for applying and optimizing
Algorithm Selection, while the problem has not been addressed
in an SPF context on a theoretical level either.

III. IOT-AWARE ALGORITHM SELECTION IN SPFS

Apart from the obvious benefit of selecting faster algorithms
whenever the system can afford it, the main way in which
algorithm selection can enhance stream processing latency is by
preventing overloading of the constraint IoT devices on which
stream processing tasks are running. This kind of overloading
can also lead to system failures and cause some tasks to stop
working, thus leading to the breaking of entire processing
chains (running topologies). For example, two algorithms / task
implementations for face detection might have a significantly
different trade-off in CPU and RAM resource usage, e.g. the
faster implementation might require more memory. This is not
an issue as long as the IoT gateway devices on which the face
detection tasks run are not overloaded, but it might be a better
idea to switch to the usually slower algorithm and avoid a
too high RAM or CPU load if many tasks are running on the
device. This is due to overloaded devices generally leading
to higher latencies than when just using a slower algorithm
not causing an overload. We further explain in Section III-B
by giving a more detailed example. However, realizing an
algorithm selection solution as an SPF mechanism based on
these principles firstly requires SPF architectural extensions,
algorithm characterization models, and optimization solutions,
which are described in the rest of this section.

A. Extending SPF architectures to support algorithm selection

In Figure 2, we show the modules that typically comprise
an SPF middleware. We use our own terminology in order
to reflect a generic SPF architecture, which is based on our



analysis and comparison of state-of-the-art open source SPFs1.
The blue dashed boxes show the modules that we have added
to enable efficient algorithm selection.

Typically, SPF middleware consists of two main parts: i) The
orchestration middleware, being responsible for the deployment
of the topology and for coordinating the messaging and the
communication between different tasks running on different
nodes. It usually runs as a single central instance. ii) The
node middleware executing stream processing tasks. It resides
on every processing node (i.e., server, computer, VM, or any
device that hosts tasks). The following components are placed
on the two middleware sides:

1) Orchestration middleware side: The Cluster Manager
registers the devices that comprise the cluster and maintains
information about their status and the tasks that are running
on them. The Task Allocator retrieves information from the
Cluster Manager and additional configuration files or settings,
and runs an algorithm to determine which tasks shall run
on which nodes. Based on that decision, the Task Deployer
will remotely deploy the tasks onto the devices. Finally, SPF
orchestration middleware solutions usually contain a Messaging
Broker, which organizes (and sometimes mediates) the delivery
of streaming data items (tuples) from task to task.

2) Node middleware side: The Node Manager interacts
with the Cluster Manager in order to attach the node to the
cluster. It also interacts with the Task Deployer in order to
receive the packaged executables of the tasks, which it is
going to run inside the Task Container. Finally, a Messaging
Agent is also provided as part of the SPF node middleware
in order to send and receive data streaming items without
the application developer having to care about how this is
implemented.

For adding algorithm selection support, we propose the
following SPF extensions:

Orchestration middleware extensions: The new Node
Classifier cooperates with the Cluster Manager to map each
of the nodes of the cluster to one of the device types that
will be used for characterizing the behavior of algorithms.
This module is added because different device types have
different processing characteristics and each algorithm has to
be described by different resource utilization functions for the
different device types it might run on.

Node middleware extensions: The Resource Monitor mon-
itors the status of consumed and available resources on each
node. This new module is required because the resources on
a node are shared among multiple tasks and probably other
applications which are running on the node, and thus the amount
of the available resources might fluctuate frequently. The Task
Locator talks to the Node Manager and Task Container for
obtaining a local view of the streaming application topology
running on this node. This particularly includes algorithm

1For example, our Task Allocator corresponds with Nimbus’s scheduler in
Storm and the YARN ResourceManager in Samza, our Node Manager would
be the Supervisor in Storm and the YARN Node Manager in Samza, while
our Messaging Broker would be ZeroMQ and/or RabbitMQ/Kafka in Storm.

selection possibilities, i.e., the alternative implementations of
components. The Algorithm Selection Reasoner is the core
module of our extension, which runs an optimization algorithm
for selecting the current algorithms of choice in each of the
tasks to minimize latency (cf. subsection III-C). The reason
why the reasoner resides in the node middleware and not
in the orchestration middleware is that our optimization is
working locally, i.e., it only needs to know about other tasks
running on the same node. In contrast to our approach, a global
optimization would make sense if we wanted to minimize node
load while adhering to end-to-end latency constraints. However,
our goal is formulated differently, i.e. as minimizing end-to-end
latency while adhering to node load constraints. The Algorithm
Classifier characterizes the available algorithms in a way that
fits the SPF algorithm selection problem, and feeds the reasoner
with its output. The Algorithm Classifier could also reside in
the orchestration middleware. However, running it in the node
middleware allows for updating the algorithm characteristics
based on local monitoring, in case this is desired. Finally, the
Node Classifier Agent cooperates with the Node Classifier for
performing and communicating the node classification.

B. Characterization of algorithms for SPF algorithm selection

One of the major obstacles towards setting up a solution with
dynamic algorithm selection capabilities is the absence of useful
metrics that characterize the algorithms. The typically used and
well-known metrics of asymptotic computational complexity
and memory requirements are unsuited for implementation-
specific real-world application.

Simplified, executing a task requires resources (computation
steps and memory) and depends on the input size. As stream
processing tasks usually act upon individual inputs (often pre-
known fixed-size tuples), we can further derive latency as the
timespan until the computation on one tuple has finished. This
implies the computational power of the hosting device being
the next parameter also influencing the actual latency. Due
to having constrained devices in our setup, the question is
rather what load the algorithms put on the hosting device and
how much memory they consume. As explained before, this
depends on the tuple input rate, implementation of algorithms,
and the hosting node—becoming even more complex as the
latter two may differ in distinct combinations.

Based on the above observations, we developed the schema
of Figure 3. The data model assumes that there might be a set
of algorithms that can be employed to implement the same task.
This is quite typical for certain categories of algorithms, e.g.,
compression (as we see in our examples and our evaluation),
while it must be also noted that the approach is not limited
to algorithms with the strict sense of the term. “Different
algorithms” might simply refer to different implementations of
the same functionality, whatever this functionality is. Different
implementations of the same functionality can certainly quite
often have different characteristics with regard to CPU-intensity,
RAM-intensity, and other parameters. For each combination of
a Component, an Algorithm, and a Device Type (i.e., an attribute



Algorithm characterization example 

Page 1 

Capture 

Image 

Compress Encrypt 

Component 

Name 

Algorithm 

Name 

Device 

Type 

CPULoad 

PerInputRate 

(in %, where x 

is the input rate 

in MB/sec) 

RAMLoad 

PerInputRate 

(in %, where x 

is the input rate 

in MB/sec) 

CPULoad 

Threshold 

(in %) 

RAMLoad 

Threshold 

(in %) 

Basic 

Response 

Time 

(milli- 

seconds) 

Compress JPEG Type1 8.45x 2.3x 90 90 240 

Compress JPEG2000 Type1 11.31x 3.1x 90 90 163 

Compress JPEG-XR Type1 10.76x 2.4x 90 90 172 

... ... ... ... ... ... ... ... 

Encrypt AES-128 Type1 5.2x 4.3x 90 90 62 

Encrypt Blowfish Type1 7.3x 5.1x 90 90 44 

... ... ... ... ... ... ... ... 

Fig. 3. Algorithm characterization schema including examples. Different
(alternative) algorithms exist for the Compress and Encrypt tasks. The entries
are based on implementations which we benchmarked on our test environment
and used in our evaluation. The computed functions may depend more on our
implementation, our system, and the used libraries, and not on the algorithms
themselves. Some further details, e.g., about the device types, are provided in
the evaluation section.

according to a distinct combination of CPU and RAM), we
define the following metrics, each obtainable via benchmarking:

• CPU Load Per Input Rate: The CPU load (in %) caused
by the execution of this algorithm on this device type,
expressed as a function f(x), where x is the input rate
in MB/s.

• RAM Load Per Input Rate: As above, but for the RAM.
• CPU Load Threshold: The threshold of CPU load (in

%) above which the execution time (i.e., latency per
tuple) of the algorithm on this device type is expected to
increase rapidly. Up to that point the execution time either
increases slowly or it remains stable, depending on the
nature of the algorithm (IO-intensity vs. CPU-intensity)2,
the processor characteristics, CPU queue characteristics,
and various other factors. This exponential increase is
explained based mainly on queueing theory in [13], in
which it is also explained that various further (delay-
causing) bottlenecks (e.g., for moving processes etc.)
appear when “CPU saturation” is reached. As stated there,
“100% CPU utilization is not twice as bad as 50% CPU
utilization, it is much worse than that”. Therefore, various
works (cf. [13, 14] ) use overload thresholds, usually
between 75%-95%. Since “algorithm” in our context
means “any task”, while modern compilers and processors
are very complex, the easiest way to find this threshold
is (automatic) testing.

• RAM Load Threshold: As above, but for the RAM.
• Basic Response Time: The expected latency per tuple

of the algorithm on this device if no other tasks run on it.
Figure 3 shows example instances of the above schema
based on a simple example topology, in which a task
captures images and sends them to a next task which
compresses them, while a third task encrypts the data.

2For example, an algorithm which takes two seconds to execute but 99% of
that time is used for an I/O operation, is most likely not significantly affected
by CPU load. Contrary, operations of a CPU-bound algorithm that find the
CPU at 90% utilization will have a 90% probability to be kept waiting.

The table shows three alternatively applicable algorithms
for the Compress task and two for the Encrypt task.
We benchmarked each of the choices and modeled their
characteristics as a linear function depending on the input
rate at the range of interest.

Independent from the exact schema that we used, the new
features that are contributed here lie in i) expressing CPU and
RAM usage as a function of tuple input rates, ii) combining
algorithmic efficiency measures with user-defined IoT device
categorization, iii) formulating algorithmic efficiency in a way
that fits the algorithm selection optimization problem, and iv)
using thresholds based on the previously described observation
of how latencies per tuple relate to CPU / RAM load.

C. Algorithm selection optimization problem for SPFs

For realizing algorithm selection, we propose using an opti-
mization problem statement. Although we found no concrete
formulations of this problem, some works (e.g., [8]) imply
doing so. Therefore, we contribute an optimization problem
for algorithm selection that complies with i) the technical
landscape of SPFs, ii) the conceived algorithm characterization
schema, and iii) assumptions related to SPF technology.

For achieving our low latency goal, we minimize the amount
of time that the input tuple stays in the topology until it is
completely processed, which we define as Lat. For example,
in a rolled out sequential topology with dz tasks deployed
on z devices (D1, ... Dz) as shown in Figure 4, Lat sums
up to the amount of time from the moment that the input
tuple enters the topology at link L1 until the moment task tdz

finishes its operation on it. We provide the basis optimization
problem according to this example for simplicity. Even for more
complex topologies, the basic elements and the problem remain
the same, but might require a slightly different formulation.
With Equation (1), we define Lat, where Lat(Li) is the latency
over link Li and L(Di) is amount of time taken by the tasks
which are located on device Di.

Lat =
z∑

i=1

Lat(Li) + Lat(Di) (1)

At this point, another important assumption about function-
ally equivalent algorithms of stream processing tasks comes
into play. They are usually different implementations of either
the same or of a very similar functionality. Big differences
with regard to the input or the output of the algorithms would
probably cause incompatibilities when switching the used
algorithm. Therefore, we assume that the algorithm selection
does not significantly affect the input or output sizes. Thus, only
algorithms obeying this assumption are subject to our dynamic
algorithm selection. Based on this definition, the problem is
reduced to minimizing each Lat(Di) separately, since the
communication overhead Lat(Li) remains stable. Further, for
simplicity, we will assume in this problem formulation that
all tasks belong to the same topology (i.e., that we handle
topologies independently of each other), although the problem



Deployed topology and its elements 

Page 5 

... 

t1 td1 

D1 

L1 
... 

td1+1 td2 

... 

tdz 

L3 
L2 

D2 Dz 

... 
Lz 

tdz-1+1 

Fig. 4. Visualization of deployed sequential topology and involved elements.
Each hosting device Di executes a set of subsequent tasks tj . The data flows
in a well defined fixed topology through these devices.

Algorithm Selection Knapsack 

Page 1 

t1 t2 tn 

Alg1,1 

rcpu(1,1) 

rmem(1,1) 

rt(1,1) 

 
... ..

. 

Alg1,m1 

rcpu(1,m1) 

rmem(1,m1) 

rt(1,m1) 

 

Alg2,1 

rcpu(2,1) 

rmem(2,1) 

rt(2,1) 

 

..
. 

Alg2,m2 

rcpu(2,m2) 

rmem(2,m2) 

rt(2,m2) 

 

... 

Algn,1 

rcpu(n,1) 

rmem(n,1) 

rt(n,1) 

 
..

. 

Algn,mn 

rcpu(n,mn) 

rmem(n,mn) 

rt(n,mn) 

 

Tcpu 

Tmem 

ta
s
k
s
 

A
lt
e

rn
a

ti
v
e

 a
lg

o
ri
th

m
s
 

Minimize 

Latency 

Resources 

Constraints: 

Fig. 5. SPF Algorithm Selection reduced to a Knapsack Optimization Problem.
Each task tj deployed on a single node may have various algorithms with
different resource usage characteristics rcpu, rmem and a base latency rt.
The combinatorial choice is to be minimized with regards to latency while
adhering to device resource contraints Tcpu and Tmem.

can be extended to jointly optimize algorithm selection of
multiple topologies.

Consequently, the optimization of each Lat(Di) can be
modeled as an MMKP (Multi-choice Multi-dimensional Knap-
sack Problem) with the setting that is presented in Figure 5.
There, rcpu(i, j), rmem(i, j), and rt(i, j) correspond with the
CPULoadPerInputRate, the RAMLoadPerInputRate, and the
BasicResponseTime, respectively, of the j-th algorithm of the
i-th task. Further, mi equivalent algorithms exist for the i-th
task, while Tcpu and Tmem are the CPUThreshold and the
RAMThreshold parameters (assuming here for simplicity that
they are the same for all algorithms, which is typical for the
same device).

With these definitions, and with sij ∈ {0, 1} denoting if
the j-th algorithm of the i-th task has been selected (for each
i must exist exactly one value of j for which sij = 1), the
MMKP problem formulation becomes:

Min
n∑

i=1

mi∑
j=1

rt(i, j)× sij

subject to
n∑

i=1

mi∑
j=1

rcpu(i, j)× sij ≤ Tcpu

and to
n∑

i=1

mi∑
j=1

rmem(i, j)× sij ≤ Tmem

(2)

The MMKP is NP-hard and for larger systems it would be
difficult to find the optimal solution fast. However, since we
reduced the optimization problem to the local scope of one
device, there is usually only a limited number of tasks having
alternative algorithms so that even exhaustive search may be

performed fast enough. Moreover, heuristics for finding near-
optimal solutions can be adapted for our problem and used in
order to solve it in polynomial time. Many such heuristics for
the MMKP problem are explored in [15]. .

IV. EVALUATION

The presented SPF extensions have been implemented as
extensions of Apache Storm and used for this evaluation. As
a proof of concept, we demonstrate the latency benefits of
algorithm selection for a concrete topology.

A. Setup

Evaluated approaches: Our Storm-based solution including
algorithm selection is compared with a greedy approach
deployed with the vanilla release of Storm. The latter statically
deploys the fastest available algorithm for each task. Our
solution is denoted as Storm*, while the baseline is denoted
as Storm.

Scenarios and variables: An implementation of the exam-
ple topology of Figure 3 has been used for the measurements,
containing three alternative algorithms for the Compress task
and two alternative algorithms for the Encrypt task, with the
exact characteristics shown in Figure 3, which were obtained
through test measurements. We performed the experiments for
two different device types: Type1 and Type2 were simulated
with VMs and reflect IoT GW capabilities. They both run
at 3.10 GHz with 2GB RAM, but Type1 has 1 core, while
Type2 has 2 cores. Note that Figure 3 shows the numbers only
for Type 1, while a similar pattern (with lower CPU/RAM
usage and response times) appears for Type 2. For each device
type, we varied the tuple input rate. Although we have also
performed experiments for different values of the number of
task instances of each task (i.e., Compress and Encrypt), the
results provide no additional insights, so in the selected results
that we will discuss, we have fixed this variable at 6 instances
for each task.

Metrics and experiment details: The main metric was the
average Latency per tuple (as described in Section III). In each
experiment (i.e., for each value of the input rate) we conducted
10 repetitions and each repetition continued until the “capture
image” tasks had captured and forwarded 5000 images. This
usually took a few minutes to complete. With a configured
frequency of running our algorithm selection reasoning every
5 seconds (configurable), the system had lots of possibilities
to actually switch between executed algorithms many times.
However, due to the input rate being stable throughout an entire
run, Storm* did not change its decisions often in a single run.
An additional metric that we evaluate is the average CPU load
of the hosting devices, because it has a huge impact on the
latency results.

B. Results and discussion

Based on the results, which are presented in Figures 6 and
7, we can make the following main observations:

• Storm* and Storm perform similarly in cases of lower
utilization: For lower tuple input rates, i.e., up to 5 MB/s



1 2 3 4 5 6 7

Tuple input rate (MB/sec)

0

200

400

600

800

1000

1200

1400
La

te
n
cy

 p
e
r 

tu
p
le

 (
m

ill
is

e
co

n
d
s)

Storm Storm*

(a) Avg. processing latency for Device Type1 (one CPU core)

4 8 12 16 20

Tuple input rate (MB/sec)

0

200

400

600

800

1000

1200

La
te

n
cy

 p
e
r 

tu
p
le

 (
m

ill
is

e
co

n
d
s)

Storm Storm*

(b) Avg. processing latency for Device Type2 (two CPU cores)

Fig. 6. Average processing latency per tuple for the two device types with varying tuple input rates for vanilla Apache Storm and our adapted version Storm*
(ticks denote the 90% confidence). While we observe Storm starting to break at a certain data input rate, i.e., the latency rockets up due to the underlying
greedy algorithm choice, our solution still results in comparably very low latencies due to the application of algorithm selection.

1 2 3 4 5 6 7
Tuple input rate (MB/sec)

0

20

40

60

80

100

C
P
U

 l
o
a
d
 (

%
)

Storm Storm*

(a) Avg. CPU load for Device Type1 (one CPU core)

4 8 12 16 20
Tuple input rate (MB/sec)

0

20

40

60

80

100

C
P
U

 l
o
a
d
 (

%
)
Storm Storm*

(b) Avg. CPU load for Device Type2 (two CPU cores)

Fig. 7. Average CPU load per tuple for the two device types with varying tuple input rates for vanilla Apache Storm and our adapted version Storm* (ticks
denote the 90% confidence). While we observe Storm getting very close to 100% utilization for higher tuple input rates, our solution keeps CPU utilization at
comparably very low levels, which contributes hugely to achieving lower processing latency per tuple.

(12 MB/s) for Device Type 1 (2), no significant differences
can be observed as shown in Figure 6. In those cases,
Storm and Storm* used the same algorithms, namely the
faster ones, i.e., JPEG-2000 for compression, and Blowfish
for encryption. Storm decides on this combination due to
its greedy approach of statically using the fastest algorithm,
whereas Storm* chose this combination because it was
the fastest option that was not violating its constraints.
Storm was sometimes slightly faster on average, which
is either because of differences within the margins of
statistical error (cf. overlapping 90%-confidence in Figure
6) or because of little overhead due to the additional
monitoring and control functions of Storm*.

• Storm* processes data faster in cases of high utiliza-
tion: As promised, for higher input rates, i.e., 6 or 7
MB/s (16 or 20 MB/s) for Device Type 1 (2), Storm*
processes tuples more quickly. That is due to Storm*
immediately switching to slower—but less resource-
demanding—algorithms, namely JPEG and AES-128 in
this case.
This combination shares the available resources without
leading to an over-utilization. In contrast to this, the Storm
approach breaks, i.e., leads to significantly higher latencies,
due to over-utilization. We were able to confirm this by
closer looking into the load figures during our experiments
revealing that Storm increases CPU / RAM load up to 95-



100%, while Storm* always keeps it well below 90%.
• Storm* achieves low latency by avoiding CPU bottle-

necks: As shown in Figure 7, the CPU load for lower
input rates was comparable for the two approaches, as the
available resources were always sufficient. The slightly
higher CPU load of Storm* in some cases with lower
input rates might have happened again either due to chance
or due to the monitoring and MKKP-solving software.
However, as the input rate increases, Storm* switches
to alternative algorithms which require less CPU load
and have (normally) higher response times compared to
the fastest available alternative. By selecting the fastest
algorithm, Storm often causes the CPU of the device to get
overloaded. For Type 2 devices, which are more powerful
than Type 1 devices, this overload occurs for higher input
rates, but it still occurs. This is the main reason of the
latency results of Figure 6, as well.

V. CONCLUSION

Due to their nature, Stream Processing Frameworks are
becoming more and more the solution of choice in low latency
IoT environments as usual Big Data (store first, process
afterwards) approaches are lacking real-time capabilities. To
the best of our knowledge, our approach is the first empowering
SPFs to apply dynamic algorithm selection, based on the
following main contributions: i) we describe our solution in
a new generic model of todays SPFs which we extended by
new components for this purpose, ii) we base our selection
technique on a new method of modeling practical algorithm
characteristics in terms of stream processing on a resource-wise
variety of devices, iii) we handle the problem mathematically,
we formulate algorithm selection as an optimization problem—
an instance of the Multi-choice Multi-dimensional Knapsack
Problem: locally minimize the latency of subsequent processing
tasks, while adhering to device resource constraints.

We show the potential of dynamic algorithm selection by
evaluating a simple real-world scenario within our implementa-
tion in Apache Storm. In comparison to vanilla Apache Storm,
we show latency reductions of up to a factor of 2.9. With that,
we pave the way to significantly reduce latency by applying
algorithm selection to SPFs. However, our approach may be
extended into several directions, e.g., with regard to reducing
the offline overhead of the introduced modules, finding optimal
time intervals for running the algorithm selection process, and
investigating the joint optimization of algorithm selection with
other stream processing optimizations such as task placement.

REFERENCES

[1] C.L. Philip Chen and Chun-Yang Zhang. Data-intensive
Applications, Challenges, Techniques and Technologies:
A Survey on Big Data. Information Sciences, 275:314–
347, 2014.

[2] Murat Kuzlu, Manisa Pipattanasomporn, and Saifur
Rahman. Communication network requirements for
major smart grid applications in HAN, NAN and WAN.
Computer Networks, 67:74–88, 2014.

[3] Apache Software Foundation. Apache Storm project.
http://storm.apache.org/ (last visited in June 2017).

[4] Apache Software Foundation. Apache Samza project.
http://samza.apache.org/ (last visited in June 2017).

[5] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. In ACM
SIGMOD Int. Conference on Management of Data,
SIGMOD ’15, pages 239–250. ACM, 2015.

[6] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating Scale out
and Fault Tolerance in Stream Processing Using Operator
State Management. In ACM SIGMOD Int. Conference
on Management of Data, SIGMOD ’13, pages 725–736.
ACM, 2013.

[7] Guangxiang Du and Indranil Gupta. New Techniques to
Curtail the Tail Latency in Stream Processing Systems.
In 4th Workshop on Distributed Cloud Computing, DCC
’16, pages 7:1–7:6. ACM, 2016.

[8] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra
Gedik, and Robert Grimm. A Catalog of Stream
Processing Optimizations. ACM Computing Surveys,
46(4):1–34, March 2014.

[9] Niko Pollner, Christian Steudtner, and Klaus Meyer-
Wegener. Operator Fission for Load Balancing in Dis-
tributed Heterogeneous Data Stream Processing Systems.
In 9th ACM Int. Conference on Distributed Event-Based
Systems, DEBS ’15, pages 332–335. ACM, 2015.

[10] William Thies, Michal Karczmarek, and Saman P. Amaras-
inghe. StreamIt: A Language for Streaming Applications.
In 11th Int. Conference on Compiler Construction, CC
’02, pages 179–196. Springer, 2002.

[11] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. T-
Storm: Traffic-Aware Online Scheduling in Storm. In
IEEE 34th Int. Conference on Distributed Computing
Systems, ICDCS ’14, pages 535–544. IEEE, 2014.

[12] Leonardo Aniello, Roberto Baldoni, and Leonardo Quer-
zoni. Adaptive Online Scheduling in Storm. In 7th
ACM Int. Conference on Distributed Event-based Systems,
DEBS ’13, pages 207–218. ACM, 2013.

[13] Charles Hooper. Faulty Quotes 6 CPU Utilization,
February 2010. https://hoopercharles.wordpress.com/
2010/02/05/faulty-quotes-6-cpu-utilization/ (last visited in
June 2017).

[14] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila.
LiRCUP: Linear Regression Based CPU Usage Prediction
Algorithm for Live Migration of Virtual Machines in Data
Centers. In 39th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA ’13,
pages 357–364. IEEE, 2013.

[15] Bing Han, Jimmy Leblet, and Gwendal Simon. Hard
Multidimensional Multiple Choice Knapsack Problems,
an Empirical Study. Computers and Operations Research,
37(1):172–181, January 2010.


